Skip to main content

Advertisement

Log in

Prevalence and Resistance Patterns of Streptococcus pneumoniae Recovered from Children in Western Asia

  • Pediatric Infectious Diseases (I Brook, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Despite the available pneumococcal conjugate vaccination (PCV), children in developing countries suffer significant morbidity and mortality from pneumococcal illness. This review outlines the pneumococcal carriage rate, common serotypes, antibiotic resistance, and PCV coverage among western Asian children.

Recent Findings

The carriage rate and prevalence of PCV serotypes remain high among children in Western Asia. In recent times, the national immunization rates have increased, but there was a considerable rate of invasive pneumococcal diseases (IPD) strains and non-invasive pneumococcal diseases (NIPD) serotypes with high antimicrobial resistance rates and many communities in western Asian countries are experiencing the phenomenon of pneumococcal vaccine serotype replacement (PVSR).

Summary

An accurate and updated disease surveillance in Western Asia is urgently needed to guide immunization efforts and protect children effectively. Increasing the PCV covering rate and antimicrobial stewardship is crucial for countries to implement strict systems and effectively minimize the high rate of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Materials

The data used to support the findings of this study are included within the article.

References

Recently published papers that are of particular interest have been highlighted as: • Of importance

  1. Adegbola RA, DeAntonio R, Hill PC, et al. Carriage of Streptococcus pneumoniae and other respiratory bacterial pathogens in low and lower-middle income countries: a systematic review and meta-analysis. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0103293.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Centers for Disease Control and Prevention. Global Pneumococcal Disease and Vaccination. January 27, 2022. https://www.cdc.gov/pneumococcal/global.html. Accessed 11 Mar 2023.

  3. Simell B, Auranen K, Käyhty H, Goldblatt D, Dagan R, O’Brien KL. The fundamental link between pneumococcal carriage and disease. Expert Rev Vaccines. 2012;11(7):841–55. https://doi.org/10.1586/erv.12.53.

    Article  CAS  PubMed  Google Scholar 

  4. • Al-Lahham A, Khanfar N, Albataina N, et al. Urban and rural disparities in pneumococcal carriage and resistance in Jordanian children, 2015–2019. Vaccines. 2021;9(7):789. https://doi.org/10.3390/vaccines9070789. This study investigates urban and rural disparities in pneumococcal carriage and resistance in Jordanian children from 2015 to 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Centers for Disease Control and Prevention. Pneumococcal Disease. In: Epidemiology and prevention of vaccine-preventable diseases, E-book: the pink book. 14th ed. Public Health Foundation; 2021:255–74. https://www.cdc.gov/vaccines/pubs/pinkbook/.

  6. Riedel S, Hobden JA, Miller S, et al. Section III bacteriology. In: Jawetz, Melnick & Adelberg’s medical microbiology. 28th ed. USA: McGraw-Hill Education; 2019;164:215–28.

  7. • Al-Lahham A. Multicenter study of pneumococcal carriage in children 2 to 4 years of age in the winter seasons of 2017–2019 in Irbid and Madaba governorates of Jordan. PLoS ONE. 2020;15(8 August):1–14. The study explores serotypes and antimicrobial resistance patterns in two Jordanian regions during 2017–2019.

  8. Sutcliffe CG, Shet A, Varghese R, et al. Nasopharyngeal carriage of Streptococcus pneumoniae serotypes among children in India prior to the introduction of pneumococcal conjugate vaccines: a cross-sectional study. BMC Infect Dis. 2019;19(1):605. https://doi.org/10.1186/s12879-019-4254-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hadjipanayis A, Efstathiou E, Alexandrou M, et al. Nasopharyngeal pneumococcal carriage among healthy children in Cyprus post widespread simultaneous implementation of PCV10 and PCV13 vaccines. PLoS ONE. 2016;11(10):1–15. https://doi.org/10.1371/journal.pone.0163269.

    Article  CAS  Google Scholar 

  10. Gordon SB, Kanyanda S, Walsh AL, et al. Poor potential coverage for 7-valent pneumococcal conjugate vaccine. Malawi Emerg Infect Dis. 2003;9(6):747–9. https://doi.org/10.3201/eid0906.030020.

    Article  PubMed  Google Scholar 

  11. Hill PC, Yin BC, Akisanya A, et al. Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian infants: a longitudinal study. Clin Infect Dis. 2008;46(6):807–14. https://doi.org/10.1086/528688.

    Article  PubMed  Google Scholar 

  12. El-Nawawy AA, Hafez SF, Meheissen MA, Shahtout NMA, Mohammed EE. Nasopharyngeal carriage, capsular and molecular serotyping and antimicrobial susceptibility of Streptococcus pneumoniae among asymptomatic healthy children in Egypt. J Trop Pediatr. 2015;61(6):455–63. https://doi.org/10.1093/tropej/fmv060.

    Article  PubMed  Google Scholar 

  13. Taha A, Ali K. Streptococcus pneumonia isolated from the nasal carriage and its antibiotic susceptibility profiles in children. Zanco J Med Sci. 2019;23(3):315–21. https://doi.org/10.15218/zjms.2019.039.

    Article  Google Scholar 

  14. Al-Kayali R, Khyami-Horani H, van der Linden M, Al-Lahham A. Antibiotic resistance patterns and risk factors of Streptococcus pneumoniae carriage among healthy Jordanian children. Eur Int J Sci Technol. 2016;5(1):55–76.

    Google Scholar 

  15. Al-Lahham A, Qayyas JA, van der Linden M. The impact of the 7-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae in infants of Ajlun governorate in Jordan. Jordan J Biol Sci. 2018;11(2):155–62.

    CAS  Google Scholar 

  16. Al-Lahham A, Van der Linden M. Streptococcus pneumoniae carriage, resistance and serotypes among Jordanian children from Wadi Al Seer District, Jordan. Int Arab J Antimicrob Agents. 2014;4(2):3–10. https://doi.org/10.3823/752.

    Article  Google Scholar 

  17. • Al-Lahham A. Prevalence of pneumococcal carriage among Jordanian infants in the first 6 months of age, 2008–2016. Vaccines. 2021;9(11):2008–16. https://doi.org/10.3390/vaccines9111283. The investigation provides valuable insights into the burden of pneumococcal carriage in this specific age group, contributing to our understanding of early-life pneumococcal colonization patterns in Jordan.

    Article  Google Scholar 

  18. Regev-Yochay G, Abullaish I, Malley R, et al. Streptococcus pneumoniae carriage in the Gaza Strip Miyaji EN, ed. PLoS ONE. 2012;7(4):e35061. https://doi.org/10.1371/journal.pone.0035061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Daana M, Rahav G, Hamdan A, et al. Measuring the effects of pneumococcal conjugate vaccine (PCV7) on Streptococcus pneumoniae carriage and antibiotic resistance: the Palestinian-Israeli Collaborative Research (PICR). Vaccine. 2015;33(8):1021–6. https://doi.org/10.1016/j.vaccine.2015.01.003.

    Article  CAS  PubMed  Google Scholar 

  20. Nasereddin A, Shtayeh I, Ramlawi A, Salman N, Salem I, Abdeen Z. Streptococcus pneumoniae from Palestinian nasopharyngeal carriers: serotype distribution and antimicrobial resistance. de Lencastre H, ed. PLoS ONE. 2013;8(12):e82047. https://doi.org/10.1371/journal.pone.0082047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koliou MG, Andreou K, Lamnisos D, et al. Serotypes and antimicrobial resistance of S. pneumoniae nasopharyngeal carriage in children from Cyprus: a country with relatively low coverage with the seven-valent pneumococcal conjugate vaccine. J Epidemiol Res. 2017;3(2):51. https://doi.org/10.5430/jer.v3n2p51.

    Article  Google Scholar 

  22. • El-Kholy A, Badawy M, Gad M, Soliman M. Serotypes and antimicrobial susceptibility of nasopharyngeal isolates of Streptococcus pneumoniae from children less than 5 years old in Egypt. Infect Drug Resist. 2020;13:3669–77. https://doi.org/10.2147/IDR.S250315. The study provides valuable data on the prevalent serotypes and their corresponding antimicrobial resistance patterns, aiding in the understanding of local pneumococcal epidemiology and informing appropriate treatment strategies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanaei A, Abdinia B, Karimi A. Nasopharyngeal carrier rate of Streptococcus pneumoniae in children: serotype distribution and antimicrobial resistance. Arch Iran Med. 2012;15(8):500–3.

    Google Scholar 

  24. Karami M, Hosseini SM, Hashemi SH, et al. Prevalence of nasopharyngeal carriage of Streptococcus pneumoniae in children 7 to 14 years in 2016: a survey before pneumococcal conjugate vaccine introduction in Iran. Hum Vaccines Immunother. 2019;15(9):2178–82. https://doi.org/10.1080/21645515.2018.1539601.

    Article  Google Scholar 

  25. • Sayyahfar S, Esteghamati A, Fahimzad SA, Hajisadeghi-Isfahani S, Nazari-Alam A, Azimi L. Serotype distribution of Streptococcus pneumoniae carriage in six-month-old infants: a cross-sectional study during 2017–18, Tehran, Iran. Arch Pediatr Infect Dis. 2021;10(1):1–8. https://doi.org/10.5812/pedinfect.112705. The study provides insights into the prevalent serotypes in this specific population, contributing to the understanding of pneumococcal epidemiology in Tehran and potentially guiding vaccination strategies.

    Article  Google Scholar 

  26. Özdemir H, Çiftçi E, Durmaz R, et al. Nasopharyngeal carriage of Streptococcus pneumoniae in healthy Turkish children after the addition of PCV7 to the national vaccine schedule. Eur J Pediatr. 2014;173(3):313–20. https://doi.org/10.1007/s00431-013-2156-7.

    Article  CAS  PubMed  Google Scholar 

  27. Soysal A, Karabağ-Yılmaz E, Kepenekli E, et al. The impact of a pneumococcal conjugate vaccination program on the nasopharyngeal carriage, serotype distribution and antimicrobial resistance of Streptococcus pneumoniae among healthy children in Turkey. Vaccine. 2016;34(33):3894–900. https://doi.org/10.1016/j.vaccine.2016.05.043.

    Article  PubMed  Google Scholar 

  28. Kanık Yüksek S, Tezer H, Gülhan B, et al. Nasopharyngeal pneumococcal carriage in healthy Turkish children after 13-valent conjugated pneumococcal vaccine implementation in the national immunization program. J Infect Public Health. 2019;13(2):266–74. https://doi.org/10.1016/j.jiph.2019.10.009.

    Article  PubMed  Google Scholar 

  29. • Ceyhan M, Karadag-Oncel E, Hascelik G, et al. Nasopharyngeal carriage of Streptococcus pneumoniae in healthy children aged less than five years. Vaccine. 2021;39(15):2041–7. https://doi.org/10.1016/j.vaccine.2021.03.028. The study provides insights into the prevalence and carriage rates of pneumococcal strains in this population, contributing to our understanding of the epidemiology of pneumococcal colonization in young children.

    Article  CAS  PubMed  Google Scholar 

  30. Al-Shamahy HA, Jabbar AR, Al Nabhi B, ALBadry A, Al Robasi A. The prevalence of Streptococcus pneumoniae carriage among healthy children in Yemen. EMIRATES Med J. 2008;26(1):25–9.

    Google Scholar 

  31. Wada FW, Tufa EG, Berheto TM, Solomon FB. Nasopharyngeal carriage of Streptococcus pneumoniae and antimicrobial susceptibility pattern among school children in South Ethiopia: post-vaccination era. BMC Res Notes. 2019;12(1):306. https://doi.org/10.1186/s13104-019-4330-0.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Negash AA, Asrat D, Abebe W, et al. Pneumococcal carriage, serotype distribution, and risk factors in children with community-acquired pneumonia, 5 years after introduction of the 10-valent pneumococcal conjugate vaccine in Ethiopia. Open Forum Infect Dis. 2019;6(6):1–8. https://doi.org/10.1093/ofid/ofz259.

    Article  CAS  Google Scholar 

  33. Abateneh DD, Shano AK, Dedo TW. Nasopharyngeal carriage of Streptococcus pneumoniae and associated factors among children in Southwest Ethiopia. Open Microbiol J. 2020;14(1):171–8. https://doi.org/10.2174/1874285802014010171.

    Article  CAS  Google Scholar 

  34. Nisar MI, Nayani K, Akhund T, et al. Correction to: Nasopharyngeal carriage of Streptococcus pneumoniae in children under 5 years of age before introduction of pneumococcal vaccine (PCV10) in urban and rural districts in Pakistan (BMC Infectious Diseases (2018) 18 (672). https://doi.org/10.1186/s12879-0. BMC Infect Dis. 2019;19(1):1–8. https://doi.org/10.1186/s12879-019-3733-9.

  35. Al-Kayali R, Khyami-Horani H, van der Linden M, Al-Lahham A. Antibiotic resistance patterns and risk factors of Streptococcus pneumoniae carriage among healthy Jordanian children. Eur Int J Sci Technol. 2016;5:55–76.

    Google Scholar 

  36. Vidanapathirana G, Angulmaduwa S, Munasinghe T, et al. Pneumococcal colonization among healthy and hospitalized vaccine-naive Sri Lankan children. Vaccine. 2020;38(46):7308–15. https://doi.org/10.1016/j.vaccine.2020.09.040.

    Article  CAS  PubMed  Google Scholar 

  37. Shormin M, Shamsuzzaman S, Afroz S, Rashed A. Antimicrobial susceptibility pattern of Streptococcus pneumoniae among healthy carrier children under five years old attended at outpatient department of largest teaching hospital in Bangladesh. Bangladesh J Infect Dis. 2022;8(1):12–7. https://doi.org/10.3329/bjid.v8i1.57950.

    Article  Google Scholar 

  38. Salsabila K, Paramaiswari WT, Amalia H, et al. Nasopharyngeal carriage rate, serotype distribution, and antimicrobial susceptibility profile of Streptococcus pneumoniae isolated from children under five years old in Kotabaru, South Kalimantan, Indonesia. J Microbiol Immunol Infect. 2022;55(3):482–8. https://doi.org/10.1016/j.jmii.2021.06.006.

    Article  CAS  PubMed  Google Scholar 

  39. Hanieh S, Hamaluba M, Kelly DF, et al. Streptococcus pneumoniae carriage prevalence in Nepal: evaluation of a method for delayed transport of samples from remote regions and implications for vaccine implementation. Beall B, ed. PLoS ONE. 2014;9(6):e98739. https://doi.org/10.1371/journal.pone.0098739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. • Haifa Al-Muhtaresh A, Bindayna KM. The prevalence of antimicrobial resistance and serotypes of Streptococcus pneumoniae in the Kingdom of Bahrain. J Pure Appl Microbiol. 2020;14(1):133–40. https://doi.org/10.22207/JPAM.14.1.14. The study provides valuable data on the antimicrobial resistance patterns and serotype distribution of pneumococcal strains in Bahrain, aiding in the understanding of local epidemiology and informing appropriate treatment strategies.

    Article  Google Scholar 

  41. Badawy M, El Kholy A, Sherif MM, et al. Serotypes of Streptococcus pneumoniae in Egyptian children: are they covered by pneumococcal conjugate vaccines? Eur J Clin Microbiol Infect Dis. 2017;36(12):2385–9. https://doi.org/10.1007/s10096-017-3071-z.

    Article  CAS  PubMed  Google Scholar 

  42. • Esteghamati A, Nazari-Alam A, Badamchi A, et al. Determination of Streptococcus pneumonia serotypes isolated from clinical specimens: a step toward the production of a native vaccine in Iran. Arch Clin Infect Dis. 2022;16(6):1–7. https://doi.org/10.5812/archcid.112897. The study is an important step towards understanding the prevalent serotypes in the region and developing a targeted vaccine strategy to combat pneumococcal infections.

    Article  CAS  Google Scholar 

  43. Houri H, Tabatabaei SR, Saee Y, Fallah F, Rahbar M, Karimi A. Distribution of capsular types and drug resistance patterns of invasive pediatric Streptococcus pneumoniae isolates in Teheran, Iran. Int J Infect Dis. 2017;57:21–6. https://doi.org/10.1016/j.ijid.2017.01.020.

    Article  CAS  PubMed  Google Scholar 

  44. • Habibi Ghahfarokhi S, Mosadegh M, Ahmadi A, et al. Serotype distribution and antibiotic susceptibility of Streptococcus pneumoniae isolates in Tehran, Iran: a surveillance study. Infect Drug Resist. 2020;13:333–40. https://doi.org/10.2147/IDR.S234295. The study provides valuable data on the prevalent serotypes and their corresponding antibiotic resistance patterns, contributing to our understanding of pneumococcal epidemiology and guiding appropriate antibiotic treatment strategies in Tehran, Iran.

    Article  PubMed  PubMed Central  Google Scholar 

  45. • Abdoli S, Safamanesh S, Khosrojerdi M, Azimian A. Molecular detection and serotyping of Streptococcus pneumoniae in children with suspected meningitis in Northeast Iran. Iran J Med Sci. 2020;45(2):125–33. https://doi.org/10.30476/ijms.2019.45423. The study findings indicate that PCV13 serotypes continue to be the primary cause of meningitis cases. It offers significant insights for precise prevention and control tactics.

    Article  PubMed  Google Scholar 

  46. • Tabatabaei SR, Karimi A, Rahbar M, et al. Profile of Streptococcus pneumoniae serotypes of children with invasive disease in Tehran, Iran. An implication for vaccine coverage. Iran J Pediatr. 2021;31(2). https://doi.org/10.5812/ijp.106086. The study results have implications for vaccine coverage, providing valuable information on the prevalent serotypes and guiding decisions regarding vaccine strategies to effectively target the specific serotypes causing invasive pneumococcal disease in Tehran, Iran.

  47. Mokaddas EM, Rotimi VO, Albert MJ. Implications of Streptococcus pneumoniae penicillin resistance and serotype distribution in Kuwait for disease treatment and prevention. Clin Vaccine Immunol. 2008;15(2):203–7. https://doi.org/10.1128/CVI.00277-07.

    Article  CAS  PubMed  Google Scholar 

  48. Mokaddas E, Albert MJ. Impact of pneumococcal conjugate vaccines on burden of invasive pneumococcal disease and serotype distribution of Streptococcus pneumoniae isolates: an overview from Kuwait. Vaccine. 2012;30(SUPPL. 6):G37–40. https://doi.org/10.1016/j.vaccine.2012.10.061.

    Article  CAS  PubMed  Google Scholar 

  49. Hanna-Wakim R, Chehab H, Mahfouz I, et al. Epidemiologic characteristics, serotypes, and antimicrobial susceptibilities of invasive Streptococcus pneumoniae isolates in a nationwide surveillance study in Lebanon. Vaccine. 2012;30(SUPPL. 6):G11–7. https://doi.org/10.1016/j.vaccine.2012.07.020.

    Article  CAS  PubMed  Google Scholar 

  50. • Reslan L, Youssef N, Boutros CF, et al. The impact of vaccination on the burden of invasive pneumococcal disease from a nationwide surveillance program in Lebanon: an unexpected increase in mortality driven by non-vaccine serotypes. Expert Rev Vaccines. 2022;21(12):1905–21. https://doi.org/10.1080/14760584.2022.2143349. The study reveals an unexpected increase in mortality driven by non-vaccine serotypes, highlighting the importance of ongoing monitoring and surveillance to evaluate the effectiveness of vaccination programs and adapt strategies accordingly.

    Article  CAS  PubMed  Google Scholar 

  51. Al-Jardani A, Al Rashdi A, Al Jaaidi A, et al. Serotype distribution and antibiotic resistance among invasive Streptococcus pneumoniae from Oman post 13-valent vaccine introduction. Int J Infect Dis. 2010;2019(85):135–40. https://doi.org/10.1016/j.ijid.2019.05.027.

    Article  CAS  Google Scholar 

  52. Al-Yaqoubi MM, Elhag KM. Serotype prevalence and penicillin-susceptibility of Streptococcus pneumoniae in Oman. Oman Med J. 2011;26(1):43–7. https://doi.org/10.5001/omj.2011.11.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Taj-Aldeen SJ, Shamseldin ES. Emerging resistant serotypes of invasive Streptococcus pneumoniae. Infect Drug Resist. 2016;9:153–60. https://doi.org/10.2147/IDR.S102410.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Al Khal AL, El Shafie SS, Al Kuwari J, Bener A. Streptococcus pneumonia serotypes in newly developed State of Qatar: consideration for conjugate vaccine. Qatar Med J. 2007;2007(2):25–8. https://doi.org/10.5339/qmj.2007.2.11.

    Article  Google Scholar 

  55. Al-Sherikh YA, Gowda LK, Ali MMM, John J, Mohammed DKH, Shashidhar PC. Distribution of serotypes and antibiotic susceptibility patterns among invasive pneumococcal diseases in Saudi Arabia. Ann Lab Med. 2014;34(3):210–5. https://doi.org/10.3343/alm.2014.34.3.210.

    Article  CAS  Google Scholar 

  56. Almazrou Y, Shibl AM, Alkhlaif R, et al. Epidemiology of invasive pneumococcal disease in Saudi Arabian children younger than 5 years of age. J Epidemiol Glob Health. 2015;6(2):95. https://doi.org/10.1016/j.jegh.2015.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mokaddas E, Albert MJ. Serotype distribution and penicillin-non-susceptibility of Streptococcus pneumoniae causing invasive diseases in Kuwait: a 10-year study of impact of pneumococcal conjugate vaccines. Expert Rev Vaccines. 2016;15(10):1337–45. https://doi.org/10.1080/14760584.2016.1198698.

    Article  CAS  PubMed  Google Scholar 

  58. Al-Mazrou A, Twum-Danso K, Al Zamil F, Kambal A. Streptococcus pneumoniae serotypes/serogroups causing invasive disease in Riyadh, Saudi Arabia: extent of coverage by pneumococcal vaccines. Ann Saudi Med. 2005;25(2):94–9. https://doi.org/10.5144/0256-4947.2005.94.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shibl AM. Distribution of serotypes and antibiotic resistance of invasive pneumococcal disease isolates among children aged 5 years and under in Saudi Arabia (2000–2004). Clin Microbiol Infect. 2008;14(9):876–9. https://doi.org/10.1111/j.1469-0691.2008.02058.x.

    Article  CAS  PubMed  Google Scholar 

  60. Draz IH, Halawa EF, Wahby G, Ismail DK, Meligy BS. Pneumococcal infection among hospitalized Egyptian children. J Egypt Public Health Assoc. 2015;90(2):52–7. https://doi.org/10.1097/01.EPX.0000465234.31794.b1.

    Article  PubMed  Google Scholar 

  61. Al Ayed MS, Hawan AA. Retrospective review of invasive pediatric pneumococcal diseases in a military hospital in the southern region of Saudi Arabia. Ann Saudi Med. 2011;31(5):469–72. https://doi.org/10.4103/0256-4947.84623.

    Article  PubMed  PubMed Central  Google Scholar 

  62. • Alshehri AS, Assiri O, Alqarni AS, et al. Prevalence and clinical presentation of sinusitis in pediatric age group in Aseer, Saudi Arabia. J Fam Med Prim Care. 2021;10(6):2358. https://doi.org/10.4103/jfmpc.jfmpc_2433_20. The study provides valuable data on the burden and characteristics of sinusitis among children, aiding in the understanding of the epidemiology and clinical manifestations of sinusitis in the region.

    Article  Google Scholar 

  63. AlSalaman J, AlShehabi K, Salah S, et al. Epidemiological and clinical characteristics of Streptococcus pneumoniae infections in a tertiary care center in Bahrain (2010–2014). Int Arab J Antimicrob Agents. 2017;7(2):1–8. https://doi.org/10.3823/0808.

    Article  Google Scholar 

  64. Tabatabaei S, Shamshiri A, Nasiri M, Weinberger D, Dadashi M, Karimi A. Pneumococcal meningitis in Iran: a systematic review and meta–analysis. J Acute Dis. 2019;8(3):99. https://doi.org/10.4103/2221-6189.259108.

    Article  Google Scholar 

  65. Ezoji K, Yaghoubi M, Nojomi M, et al. Cost-effectiveness of introducing the pneumococcal conjugate vaccine for children under 5 years in the Islamic Republic of Iran. East Mediterr Heal J. 2019;25(10):686–97. https://doi.org/10.26719/emhj.19.039.

    Article  Google Scholar 

  66. • Tabatabaei SR, Shamshiri A, Azimi L, et al. Co-infection with dual Streptococcus pneumoniae serotypes as a cause of pediatric bacterial meningitis in Iran: a multi-center cross-sectional study. BMC Infect Dis. 2022;22(1):1–5. https://doi.org/10.1186/s12879-022-07606-w. The study highlights the occurrence and clinical implications of co-infections with multiple serotypes, providing important insights into the epidemiology and management of pneumococcal meningitis in the Iranian pediatric population.

    Article  CAS  Google Scholar 

  67. • Talbird SE, Carrico J, La EM, et al. Impact of routine childhood immunization in reducing vaccine-preventable diseases in the United States. Pediatrics. 2022;150(3). https://doi.org/10.1542/peds.2021-056013. The study provides evidence of the effectiveness of childhood immunization programs in reducing the burden of vaccine-preventable diseases, highlighting the importance of vaccination in public health efforts and disease prevention strategies.

  68. • Reslan L, Finianos M, Bitar I, et al. The emergence of invasive Streptococcus pneumoniae serotype 24F in Lebanon: complete genome sequencing reveals high virulence and antimicrobial resistance characteristics. Front Microbiol. 2021;12(February):1–10. https://doi.org/10.3389/fmicb.2021.637813. The study reveals the serotype's high virulence and antimicrobial resistance characteristics, underscoring the importance of monitoring non-vaccine serotypes to inform vaccination strategies and antimicrobial stewardship efforts.

    Article  Google Scholar 

  69. Wang SA, Mantel CF, Gacic-Dobo M, Dumolard L, Cherian T, Flannery B, Whitney CG. Progress in introduction of pneumococcal conjugate vaccine - worldwide, 2000–2012. MMWR Morb Mortal Wkly Rep. 2013;62(16):308–11.

    PubMed Central  Google Scholar 

  70. • El-Beyrouty C, Buckler R, Mitchell M, Phillips S, Groome S. Pneumococcal vaccination—a literature review and practice guideline update. Pharmacother J Hum Pharmacol Drug Ther. 2022;42(9):724–40. https://doi.org/10.1002/phar.2723. This review provides a comprehensive overview of current evidence and recommendations, serving as a valuable resource for healthcare professionals in guiding their approach to pneumococcal vaccination strategies.

    Article  CAS  Google Scholar 

  71. • Al-Samhari GA, Al-Mushiki GM, Tamrakar R, et al. Prevalence, aetiology, vaccination coverage and spatio-temporal pattern among patients admitted with acute bacterial meningitis to the sentinel hospital surveillance network in Yemen, 2014–20, before and during the civil war. Int J Epidemiol. 2023;00(00):1–12. https://doi.org/10.1093/ije/dyad047. The study''s findings provide valuable insights into the impact of the conflict on the prevalence and characteristics of acute bacterial meningitis, as well as the coverage of relevant vaccinations within the hospital surveillance network in Yemen.

    Article  Google Scholar 

  72. Schrag SJ, Beall B, Dowell S. Resistant pneumococcal infections : the burden of disease and challenges in monitoring and controlling antimicrobial resistance. WHO/CDS/CS. Geneva: WHO; 2001. https://apps.who.int/iris/handle/10665/66846. Accessed 20 Dec 2022.

  73. English BK, Gaur AH. The use and abuse of antibiotics and the development of antibiotic resistance. In: Finn A, Curtis N, Pollard A (Eds) Hot topics in infection and immunity in children VI. Advances in experimental medicine and biology. Vol 659. New York: Springer; 2010:73–82. https://doi.org/10.1007/978-1-4419-0981-7_6. Accessed 20 Dec 2022.

  74. Centers for Disease Control and Prevention. Antibiotic use in the United States, 2017: Progress and Opportunities. Atlanta, GA: US; 2017.

  75. Gharibani KM, Azami A, Parvizi M, Khademi F, Mousavi SF, Arzanlou M. High frequency of macrolide-resistant Streptococcus pneumoniae colonization in respiratory tract of healthy children in Ardabil, Iran. Tanaffos. 2019;18(2):118–25. https://pubmed.ncbi.nlm.nih.gov/32440299. Accessed 28 Jan 2023.

  76. Saadi AT, Garjees NA, Rasool AH. Antibiogram profile of septic meningitis among children in Duhok, Iraq. Saudi Med J. 2017;38(5):517–20. https://doi.org/10.15537/smj.2017.5.19300.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tariq WUZ, Abou Hassanein A, Hashmey RH. Changes in susceptibility pattern of streptococcus pneumonia at Tawam Hospital in Al Ain, United Arab Emirates during (2004–2011). Pakistan Armed Forces Med J. 2016;66(1):14–21. https://www.pafmj.org/index.php/PAFMJ/article/view/140.

  78. Al-Ofairi BA, Nagi NA, Nagi SA, Al-Tawil MT, Saif WA. Otitis media in children: identification and antibiotics sensitivity of bacterial pathogens in Ibb City. Yemen PSM Microbiol. 2017;2(3):51–8. http://www.psmpublishers.org.

  79. Alhomoud F, Aljamea Z, Almahasnah R, Alkhalifah K, Basalelah L, Alhomoud FK. Self-medication and self-prescription with antibiotics in the Middle East—do they really happen? A systematic review of the prevalence, possible reasons, and outcomes. Int J Infect Dis. 2017;57:3–12. https://doi.org/10.1016/j.ijid.2017.01.014.

    Article  PubMed  Google Scholar 

  80. • Halboup A, Abdi A, Ahmed M, Al-Qadasi F, Othman GQ. Access to antibiotics without prescription in community pharmacies in Yemen during the political conflict. Public Health. 2020;183:30–5. https://doi.org/10.1016/j.puhe.2020.03.003. The study sheds light on the availability and dispensing practices of antibiotics without proper prescriptions, highlighting potential challenges and risks associated with medication access and misuse in a conflict-affected setting.

    Article  CAS  PubMed  Google Scholar 

  81. • Orubu ESF, Al-Dheeb N, Ching C, et al. Assessing antimicrobial resistance, utilization, and stewardship in Yemen: an exploratory mixed-methods study. Am J Trop Med Hyg. 2021;105(5):1404–12. https://doi.org/10.4269/ajtmh.21-0101. The study provides insights into the current landscape of antimicrobial resistance, antibiotic utilization patterns, and the implementation of stewardship practices in Yemen, contributing to a better understanding of the challenges and potential strategies for addressing antimicrobial resistance in the country.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lee NY, Song JH, Kim S, et al. Carriage of antibiotic-resistant pneumococci among Asian children: a multinational surveillance by the Asian Network for Surveillance of Resistant Pathogens (ANSORP). Clin Infect Dis. 2001;32(10):1463–9. https://doi.org/10.1086/320165.

    Article  CAS  PubMed  Google Scholar 

  83. Song JH, Jung SI, Ko KS, et al. High prevalence of antimicrobial resistance among clinical Streptococcus pneumoniae isolates in Asia (an ANSORP study). Antimicrob Agents Chemother. 2004;48(6):2101–7. https://doi.org/10.1128/AAC.48.6.2101-2107.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sallam M. Trends in antimicrobial drug resistance of Streptococcus pneumoniae isolates at Jordan University Hospital (2000–2018). Antibiotics. 2019;8(2):41. https://doi.org/10.3390/antibiotics8020041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gandhi G. Charting the evolution of approaches employed by the Global Alliance for Vaccines and Immunizations (GAVI) to address inequities in access to immunization: A systematic qualitative review of GAVI policies, strategies and resource allocation mechanisms through an equity lens (1999-2014). BMC Public Health. 2015;15(1). https://doi.org/10.1186/s12889-015-2521-8

  86. Bogaert D, de Groot R, Hermans P. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis. 2004;4(3):144–54. https://doi.org/10.1016/S1473-3099(04)00938-7.

    Article  CAS  PubMed  Google Scholar 

  87. World Heath Organization. Immunization data. WHO Immunization Data portal. https://immunizationdata.who.int/listing.html?topic=coverage&location=emr. Published 2022. Accessed 18 Apr 2023.

  88. Howidi M, Muhsin H, Rajah J. The burden of pneumococcal disease in children less than 5 years of age in Abu Dhabi, United Arab Emirates. Ann Saudi Med. 2011;31(4):356–9. https://doi.org/10.4103/0256-4947.83214. Accessed 28 Apr 2023.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sütçü M, Aktürk H, Karagözlü F, Somer A, Gürler N, Salman N. Empyema due to Streptococcus pneumoniae serotype 9V in a child immunized with 13-valent conjugated pneumococcal vaccine. Balkan Med J. 2017;34(1):74–7. https://doi.org/10.4274/balkanmedj.2015.0937.

    Article  PubMed  PubMed Central  Google Scholar 

  90. • Takeuchi N, Naito S, Ohkusu M, et al. Epidemiology of hospitalized paediatric community-acquired pneumonia and bacterial pneumonia following the introduction of 13-valent pneumococcal conjugate vaccine in the national immunization programme in Japan. Epidemiol Infect. 2020;148(e91):1–11. https://doi.org/10.1017/S0950268820000813. It reveals a rise in penicillin G resistance for NVS 15A and 35B during the study period, and highlights the changing antimicrobial resistance patterns of pneumococcal strains in Japan following the introduction of the PCV13 in the national immunization program.

    Article  Google Scholar 

  91. • Al-Tarbi AM, Ghouth, ASB. Vaccination coverage in Tarim District, Yemen, 2017. Am J Epidemiol Public Heal. 2020;4(1):010–015. https://www.researchgate.net/publication/350106427. The study provides insights into the extent of vaccine coverage in the district, contributing to our understanding of the immunization status and potential gaps in vaccination efforts in this specific region of Yemen.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Divakar Sharma or Sandeep Sharma.

Ethics declarations

Conflict of Interest

None to be declared.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matran, Y.M., Al-Haddad, A.M., Sharma, D. et al. Prevalence and Resistance Patterns of Streptococcus pneumoniae Recovered from Children in Western Asia. Curr Infect Dis Rep 25, 169–180 (2023). https://doi.org/10.1007/s11908-023-00807-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-023-00807-7

Keywords

Navigation