Skip to main content

Advertisement

Log in

Neurological Complications of HIV Infection

  • Central Nervous System Infections (K Bloch, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

HIV-associated neurocognitive disorders (HAND) are common in patients with HIV disease, even during suppressive combination antiretroviral therapy (cART). This review article addresses the pathogenesis of HAND, focusing on important findings from the last 5 years.

Recent Findings

While HIV-associated dementia is now rare in settings with cART availability, mild forms of HAND are increasing in prevalence. Biomarkers of cellular injury, such as neurofilament light chain and neopterin, can detect early stages of neuroinflammation associated with HIV infection and are increased even in asymptomatic individuals with chronic HIV infection. Several recent studies form a growing body of evidence that HIV can infect and replicate in monocytes and that blocking monocyte activity can potentially improve neurological outcomes in HIV. Early cART may also prevent HAND.

Summary

Understanding the multifactorial causes of CNS infection and inflammation is critical to devising treatment and preventive strategies for HAND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, LeBlanc S, et al. HIVassociated neurocognitive disorders before and during the era of combination antiretroviral therapy: Differences in rates, nature, and predictors. J. Neurovirol. 2011;17:3–16.

    Article  CAS  PubMed  Google Scholar 

  2. Lescure FX, Omland LH, Engsig FN, Roed C, Gerstoft J, Pialoux G, et al. Incidence and impact on mortality of severe neurocognitive disorders in persons with and without HIV infection: A Danish nationwide cohort study. Clin Infect Dis. 2011;52:235–43.

    Article  PubMed  Google Scholar 

  3. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, et al. The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS. 2007;21:1915–21.

    Article  PubMed  Google Scholar 

  4. • Grant I, Franklin DR, Deutsch R, Woods SP, Vaida F, Ellis RJ, et al. Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology. 2014;82:2055–62. This study from the CHARTER cohort focusing mainly on treated individuals found that the diagnosis of ANI at baseline predicted an increased risk for progression to symptomatic cognitive deficits over four years of follow up.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brew BJ, Dunbar N, Pemberton L, Kaldor J. Predictive markers of AIDS dementia complex: CD4 cell count and cerebrospinal fluid concentrations of beta 2-microglobulin and neopterin. J Infect Dis. 1996;174:294–8.

    Article  CAS  PubMed  Google Scholar 

  6. Skillback T, Farahmand B, Bartlett JW, Rosen C, Mattsson N, Nagga K, et al. CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival. Neurology. 2014;83:1945–53.

    Article  PubMed  Google Scholar 

  7. Peterson J, Gisslen M, Zetterberg H, Fuchs D, Shacklett BL, Hagberg L, et al. Cerebrospinal fluid (CSF) neuronal biomarkers across the spectrum of HIV infection: Hierarchy of injury and detection. PLoS One. 2014;9

  8. Krut JJ, Mellberg T, Price RW, Hagberg L, Fuchs D, Rosengren L, et al. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients. PLoS One. 2014;9

  9. • Edén A, Marcotte TD, Heaton RK, Nilsson S, Zetterberg H, Fuchs D, et al. Increased Intrathecal Immune Activation in Virally Suppressed HIV-1 Infected Patients with Neurocognitive Impairment. PLoS One. 2016;11. CSF biomarkers of inflammation are elevated in individuals on suppressive cART with ANI and MND, making them potentially useful in diagnosis of mild HAND.

  10. Gisslén M, Price RW, Andreasson U, Norgren N, Nilsson S, Hagberg L, et al. Plasma Concentration of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study. EBioMedicine. 2016;3:135–40.

  11. Calcagno A, Atzori C, Romito A, Vai D, Audagnotto S, Stella ML, et al. Blood brain barrier impairment is associated with cerebrospinal fluid markers of neuronal damage in HIV-positive patients. J. Neurovirol. 2016;22:88–92.

  12. Schouten J, Cinque P, Gisslen M, Reiss P, Portegies P. HIV-1 infection and cognitive impairment in the cART era: a review. Lippincott Williams & Wilkins. 2011;25:561–75.

  13. Cysique LA, Hewitt T, Croitoru-Lamoury J, Taddei K, Martins RN, Chew CS, et al. APOE ε4 moderates abnormal CSF-abeta-42 levels, while neurocognitive impairment is associated with abnormal CSF tau levels in HIV+ individuals – a cross-sectional observational study. BMC Neurol. 2015;15:51.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Valcour V, Chalermchai T, Sailasuta N, Marovich M, Lerdlum S, Suttichom D, et al. Central nervous system viral invasion and inflammation during acute HIV infection. J. Infect. Dis. 2012;206:275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sailasuta N, Ross W, Ananworanich J, Chalermchai T, DeGruttola V, Lerdlum S, et al. Change in Brain Magnetic Resonance Spectroscopy after Treatment during Acute HIV Infection. PLoS One. 2012;7

  16. Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S. Compartmentalized Replication of R5 T Cell-Tropic HIV-1 in the Central Nervous System Early in the Course of Infection. PLoS Pathog. 2015;11:1–24.

    Article  Google Scholar 

  17. Gonzalez-Scarano F, Martin-Garcia J. The neuropathogenesis of AIDS. Nat Rev Immunol. 2005;5:69–81.

    Article  CAS  PubMed  Google Scholar 

  18. • Honeycutt JB, Thayer WO, Baker CE, Ribeiro RM, Lada SM, Cao Y, et al. HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy. Nat. Med. 2017;23:638–43. HIV infects tissue macrophages in the absence of CD4 T cells, and can rebound after ART is removed, suggesting a persistent reservoir in tissue macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Honeycutt JB, Wahl A, Baker C, Spagnuolo RA, Foster J, Zakharova O, et al. Macrophages sustain HIV replication in vivo independently of T cells. J. Clin. Invest. 2016;126:1353–66.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ellis RJ, Gamst AC, Capparelli E, Spector SA, Hsia K, Wolfson T, et al. Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology. 2000;54:927–36.

    Article  CAS  PubMed  Google Scholar 

  21. Spudich SS, Nilsson AC, Lollo ND, Liegler TJ, Petropoulos CJ, Deeks SG, et al. Cerebrospinal fluid HIV infection and pleocytosis: Relation to systemic infection and antiretroviral treatment. BMC Infect. Dis. 2005;5:98.

    Article  PubMed  PubMed Central  Google Scholar 

  22. • Dahl V, Peterson J, Fuchs D, Gisslen M, Palmer S, Price RW. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS. 2014;28:2251–8. Using single-copyassays, low level persistent virus can be detected in CSF of patients who were otherwise thought to have long-term virological suppression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Edén A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, et al. HIV1 Viral Escape in Cerebrospinal Fluid of Subjects on Suppressive Antiretroviral Treatment. J. Infect. Dis. 2010;202:1819–25.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Peluso MJ, Ferretti F, Peterson J, Lee E, Fuchs D, Boschini A, et al. Cerebrospinal Fluid HIV Escape Associated with Progressive Neurologic Dysfunction in Patients on Antiretroviral Therapy with Well-Controlled Plasma Viral Load. AIDS. 2012.

  25. • Lamers SL, Rose R, Maidji E, Agsalda-Garcia M, Nolan DJ, Fogel GB, et al. HIV DNA Is Frequently Present within Pathologic Tissues Evaluated at Autopsy from Combined Antiretroviral Therapy-Treated Patients with Undetectable Viral Loads. J. Virol. 2016;90:8968–83. Autopsy derived tissues show very high levels of HIV DNA in various tissues, including brain, of virologically suppressed patients

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yilmaz A, Yiannoutsos CT, Fuchs D, Price RW, Crozier K, Hagberg L, et al. Cerebrospinal fluid neopterin decay characteristics after initiation of antiretroviral therapy. J. Neuroinflammation. 2013;10:62.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Harezlak J, Buchthal S, Taylor M, Schifitto G, Zhong J, Daar E, et al. Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS. 2011;25:625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ho EL, Ronquillo R, Altmeppen H, Spudich SS, Price RW, Sinclair E. Cellular Composition of Cerebrospinal Fluid in HIV-1 Infected and Uninfected Subjects. PLoS One. 2013;8.

  29. Neuenburg JK, Cho TA, Nilsson A, Bredt BM, Hebert SJ, Grant RM, et al. T-cell activation and memory phenotypes in cerebrospinal fluid during HIV infection. J. Acquir. Immune Defic. Syndr. 2005;39:16–22.

    Article  PubMed  Google Scholar 

  30. Grauer OM, Reichelt D, Grüneberg U, Lohmann H, Schneider-Hohendorf T, Schulte-Mecklenbeck A, et al. Neurocognitive decline in HIV patients is associated with ongoing T-cell activation in the cerebrospinal fluid. Ann. Clin. Transl. Neurol. 2015;2:906–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. • Ganesh A, Lemongello D, Lee E, Peterson J, Mclaughlin BE, Ferre AL, et al. Immune activation and HIV-Specific CD8+ T cells in cerebrospinal fluid of HIV controllers and noncontrollers. AIDS Res. Hum. Retroviruses. 2016;32. HIV specific CD8+ cells can be detected in CSF of HIV controllers with chronic infection.

  32. Kessing CF, Spudich S, Valcour V, Cartwright P, Chalermchai T, Fletcher JLK, et al. High Number of Activated CD8+ T Cells Targeting HIV Antigens are Present in Cerebrospinal Fluid in Acute HIV Infection. J Acquir Immune Defic Syndr. 2017.

  33. Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K, et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS. 2009;23:1359–66.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Leutscher PDC, Stecher C, Storgaard M, Larsen CS. Discontinuation of efavirenz therapy in HIV patients due to neuropsychiatric adverse effects. Scand. J. Infect. Dis. 2013;45:645–51.

    Article  CAS  PubMed  Google Scholar 

  35. Shubber Z, Calmy A, Andrieux-Meyer I, Vitoria M, Renaud-Théry F, Shaffer N, et al. Adverse events associated with nevirapine and efavirenz-based first-line antiretroviral therapy: a systematic review and meta-analysis. AIDS. 2013;27:1403–12.

    Article  CAS  PubMed  Google Scholar 

  36. Mills A, Antinori A, Clotet B, Fourie J, Herrera G, Hicks C, et al. Neurological and psychiatric tolerability of rilpivirine (TMC278) vs. efavirenz in treatment-naïve, HIV-1- infected patients at 48 weeks. HIV Med. 2013;14:391–400.

    Article  CAS  PubMed  Google Scholar 

  37. Imaz A, Cayuela N, Niubó J, Tiraboschi JM, Izquierdo C, Cabellos C, et al. Focal Encephalitis Related with Viral Escape and Resistance Emergence in Cerebrospinal Fluid in a Patient on Lopinavir/ritonavir Monotherapy with Plasma HIV-1 RNA Suppression. AIDS Res. Hum. Retroviruses. 2014;30:984–7.

    Article  CAS  PubMed  Google Scholar 

  38. Ferretti F, Gianotti N, Lazzarin A, Cinque P. Central nervous system HIV infection in less-drug regimen antiretroviral therapy simplification strategies. Semin. Neurol. 2014;34:78–88.

    Article  PubMed  Google Scholar 

  39. Althoff KN, McGinnis KA, Wyatt CM, Freiberg MS, Gilbert C, Oursler KK, et al. Comparison of risk and age at diagnosis of myocardial infarction, end-stage renal disease, and non-AIDS-defining cancer in HIV-infected versus uninfected adults. Clin. Infect. Dis. 2015;60:627–38.

    Article  PubMed  Google Scholar 

  40. Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, Garlassi E, et al. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin. Infect. Dis. 2011;53:1120–6.

    Article  PubMed  Google Scholar 

  41. Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased Acute Myocardial Infarction Rates and Cardiovascular Risk Factors among Patients with Human Immunodeficiency Virus Disease. J Clin Endocrinol Metab. 2007;92:2506–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shiels MS, Althoff KN, Pfeiffer RM, Achenbach CJ, Abraham AG, Castilho J, et al. HIV infection, immunosuppression, and age at diagnosis of non-AIDS-defining cancers. Clin. Infect. Dis. 2017;64:468–75.

    PubMed  Google Scholar 

  43. Pathai S, Bajillan H, Landay AL, High KP. Is HIV a model of accelerated or accentuated aging? Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 2014. p. 833–42.

  44. Kissel EC, Pukay-Martin ND, Bornstein RA. The relationship between age and cognitive function in HIV-infected men. J. Neuropsychiatry Clin. Neurosci. 2005;17:180–4.

    Article  PubMed  Google Scholar 

  45. Valcour V, Shikuma C, Shiramizu B, Watters M, Poff P, Selnes O, et al. Higher frequency of dementia in older HIV-1 individuals: the Hawaii Aging with HIV-1 Cohort. Neurology. 2004;63:822–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilkie FL, Goodkin K, Khamis I, van Zuilen MH, Lee D, Lecusay R, et al. Cognitive functioning in younger and older HIV-1-infected adults. J. Acquir Immune Defic Syndr. 2003;33(Suppl 2):S93–105.

    Article  PubMed  Google Scholar 

  47. • Goodkin K, Miller EN, Cox C, Reynolds S, Becker JT, Martin E, et al. Effect of ageing on neurocognitive function by stage of HIV infection: evidence from the Multicenter AIDS Cohort Study. Lancet HIV. Elsevier; 2017. Longitudinal cohort study that controlled for many co-morbidities and found significant deleterious interaction between HIV and aging on neurocognitive outcomes.

  48. Joint United Nations Programme on HIV/AIDS (UNAIDS). Fact sheet, People living with HIV, HIV, antiretroviral therapy, new HIV infections, AIDS, tuberculosis, facts. Fact Sheet. 2016;1–8.

  49. CDC. HIV Among Pregnant Women, Infants, and Children [Internet]. Div. HIV/AIDS Prev. Natl. Cent. HIV/AIDS, Viral Hepatitis, Sex. Transm. Dis. Tuberc. Prev. Centers Dis. Control Prev. 2015. p. 1. Available from: http://www.cdc.gov/hiv/group/gender/pregnantwomen/index.html

  50. Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, et al. Blood-brain barrier dysfunction in disorders of the developing brain. Front. Neurosci. 2015;9.

  51. Ackermann C, Andronikou S, Laughton B, Kidd M, Dobbels E, Innes S, et al. White matter signal abnormalities in children with suspected HIV-related neurologic disease on early combination antiretroviral therapy. Pediatr. Infect. Dis. J. 2014;33:e207–12.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hoare J, Fouche JP, Spottiswoode B, Donald K, Philipps N, Bezuidenhout H, et al. A diffusion tensor imaging and neurocognitive study of HIV-positive children who are HAART-naïve “slow progressors.”. J. Neurovirol. 2012;18:205–12.

    Article  PubMed  Google Scholar 

  53. Wilmshurst JM, Donald KA, Eley B. Update on the key developments of the neurologic complications in children infected with HIV. Curr. Opin. HIV AIDS. 2014;9:533–8.

    Article  CAS  PubMed  Google Scholar 

  54. Wood SM, Shah SS, Steenhoff APRR. The impact of AIDS diagnoses on long-term neurocognitive and psychiatric outcomes of surviving adolescents with perinatally acquired HIV. AIDS. 2009;23:1859–65.

    Article  PubMed  Google Scholar 

  55. Smith R, Chernoff M, Williams PL, Malee KM, Sirois PA, Kammerer B, et al. Impact of HIV severity on cognitive and adaptive functioning during childhood and adolescence. Pediatr. Infect. Dis. J. 2012;31:592–8.

    Article  PubMed  Google Scholar 

  56. Robertson K, Jiang H, Kumwenda J, Supparatpinyo K, Evans S, Campbell TB, et al. Improved neuropsychological and neurological functioning across three antiretroviral regimens in diverse resource-limited settings: Aids clinical trials group study A5199, the international neurological study. Clin. Infect. Dis. 2012;55:868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sacktor N, Nakasujja N, Skolasky R, Robertson K, Wong M, Musisi S, et al. Antiretroviral therapy improves cognitive impairment in HIV+ individuals in sub-Saharan Africa. Neurology. 2006;67:311–4.

    Article  CAS  PubMed  Google Scholar 

  58. Robertson K, Lama J, Pilcher C, Rios J, Brandes P, Ruiz E, et al. Can we afford to wait? ART and the CNS. Conf. Retroviruses Opportunistic Infect. 2017.

  59. Evering TH, Applebaum A, La Mar M, Garmon D, Dorfman D, Markowitz M. Rates of non-confounded HIV-associated neurocognitive disorders in men initiating combination antiretroviral therapy during primary infection. AIDS. 2016;30:203–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kore I, Ananworanich J, Valcour V, Fletcher JLK, Chalermchai T, Paul R, et al. Neuropsychological Impairment in Acute HIV and the Effect of Immediate Antiretroviral Therapy. J. Acquir. Immune Defic. Syndr. 2015;70:393–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ellis RJ, Letendre S, Vaida F, Haubrich R, Heaton RK, Sacktor N, et al. Randomized trial of central nervous system-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin. Infect. Dis. 2014;58:1015–22.

    Article  CAS  PubMed  Google Scholar 

  62. Gates TM, Cysique LA, Siefried KJ, Chaganti J, Moffat KJ, Brew BJ. Maravirocintensified combined antiretroviral therapy improves cognition in virally suppressed HIVassociated neurocognitive disorder. AIDS. 2016;30:591–600.

    Article  CAS  PubMed  Google Scholar 

  63. Valcour VG, Spudich SS, Sailasuta N, Phanuphak N, Lerdlum S, Fletcher JLK, et al. Neurological Response to cART vs. cART plus integrase inhibitor and ccr5 antagonist initiated during acute HIV. PLoS One. 2015;10.

  64. Covino DA, Sabbatucci M, Fantuzzi L. The CCL2/CCR2 Axis in the Pathogenesis of HIV-1 Infection: A New Cellular Target for Therapy? Curr. Drug Targets. 2016;17:76–110.

    Article  CAS  PubMed  Google Scholar 

  65. Ndhlovu L, D’Antoni M, Paul R, Kallianpu K, Fischer L, Lefebvre E, et al. Cenicriviroc improves neurocognition and reduces monocyte activation in treated HIV. Conf. Retroviruses Opportunistic Infect. 2017. p. #381.

  66. Campbell JH, Ratai EM, Autissier P, Nolan DJ, Tse S, Miller AD, et al. Anti-α4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog. 2014;10.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelli Farhadian.

Ethics declarations

Conflict of Interest

Drs Farhadian, Patel, and Spudich declare no conflicts of interests.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards.

Additional information

This article is part of the Topical Collection on Central Nervous System Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhadian, S., Patel, P. & Spudich, S. Neurological Complications of HIV Infection. Curr Infect Dis Rep 19, 50 (2017). https://doi.org/10.1007/s11908-017-0606-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-017-0606-5

Keywords

Navigation