Skip to main content

Advertisement

Log in

Central Sympathetic Inhibition: a Neglected Approach for Treatment of Cardiac Arrhythmias?

  • Device-Based Approaches for Hypertension (M Schlaich, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Overactivation of the sympathetic nervous system (SNS) plays an important role in the pathogenesis of comorbidities related to AF such as hypertension, congestive heart failure, obesity, insulin resistance, and obstructive sleep apnea. Methods that reduce sympathetic drive, such as centrally acting sympatho-inhibitory agents, have been shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may be helpful in controlling AF. Moxonidine acts centrally to reduce activity of the SNS, and clinical trials indicate that this is associated with a decreased AF burden in hypertensive patients with paroxysmal AF and reduced post-ablation recurrence of AF in patients with hypertension who underwent pulmonary vein isolation (PVI). Furthermore, device-based approaches to reduce sympathetic drive, such as renal denervation, have yielded promising results in the prevention and treatment of cardiac arrhythmias. In light of these recent findings, targeting elevated sympathetic drive with either pharmacological or device-based approaches has become a focus of clinical research. Here, we review the data currently available to explore the potential utility of sympatho-inhibitory therapies in the prevention and treatment of cardiac arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 2014;129(8):837–47. doi:10.1161/circulationaha.113.005119.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ardell JL. The cardiac neuronal hierarchy and susceptibility to arrhythmias. Heart Rhythm. 2011;8(4):590–1. doi:10.1016/j.hrthm.2010.12.019.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Chen PS, Tan AY. Autonomic nerve activity and atrial fibrillation. Heart Rhythm. 2007;4(3 Suppl):S61–4. doi:10.1016/j.hrthm.2006.12.006.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Janes RD, Brandys JC, Hopkins DA, Johnstone DE, Murphy DA, Armour JA. Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol. 1986;57(4):299–309.

    Article  CAS  PubMed  Google Scholar 

  5. Armour J, Hopkins D. Anatomy of the extrinsic efferent autonomic nerves and ganglia innervating the mammalian heart. In: Press NYOU, editor. Nervous control of cardiovascular function., 1984. p. 21-45.

  6. Kawashima T. The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol (Berl). 2005;209(6):425–38. doi:10.1007/s00429-005-0462-1.

    Article  Google Scholar 

  7. Baron R, Janig W, With H. Sympathetic and afferent neurones projecting into forelimb and trunk nerves and the anatomical organization of the thoracic sympathetic outflow of the rat. J Auton Nerv Syst. 1995;53(2-3):205–14.

    Article  CAS  PubMed  Google Scholar 

  8. Ellison JP, Williams TH. Sympathetic nerve pathways to the human heart, and their variations. Am J Anat. 1969;124(2):149–62. doi:10.1002/aja.1001240203.

    Article  CAS  PubMed  Google Scholar 

  9. Page PL, Dandan N, Savard P, Nadeau R, Armour JA, Cardinal R. Regional distribution of atrial electrical changes induced by stimulation of extracardiac and intracardiac neural elements. J Thorac Cardiovasc Surg. 1995;109(2):377–88.

    Article  CAS  PubMed  Google Scholar 

  10. Taniguchi T et al. Cutaneous distribution of sympathetic postganglionic fibers from stellate ganglion: a retrograde axonal tracing study using wheat germ agglutinin conjugated with horseradish peroxidase. J Anesth. 1994;8:441–9.

    Article  Google Scholar 

  11. Shen MJ, Hao-Che C, Park HW, George Akingba A, Chang PC, Zheng Z, et al. Low-level vagus nerve stimulation upregulates small conductance calcium-activated potassium channels in the stellate ganglion. Heart Rhythm. 2013;10(6):910–5. doi:10.1016/j.hrthm.2013.01.029.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ogawa M, Zhou S, Tan AY, Song J, Gholmieh G, Fishbein MC, et al. Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing-induced congestive heart failure. J Am Coll Cardiol. 2007;50(4):335–43. doi:10.1016/j.jacc.2007.03.045.

    Article  PubMed  Google Scholar 

  13. Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014;114(9):1500–15. doi:10.1161/circresaha.114.303772.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Tan AY, Li H, Wachsmann-Hogiu S, Chen LS, Chen PS, Fishbein MC. Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction: implications for catheter ablation of atrial-pulmonary vein junction. J Am Coll Cardiol. 2006;48(1):132–43.

    Article  PubMed  Google Scholar 

  15. Vracko R, Thorning D, Frederickson RG. Nerve fibers in human myocardial scars. Hum Pathol. 1991;22(2):138–46.

    Article  CAS  PubMed  Google Scholar 

  16. Vracko R, Thorning D, Frederickson RG. Fate of nerve fibers in necrotic, healing, and healed rat myocardium laboratory investigation. A J Tech Methods Pathol. 1990;63(4):490–501.

    CAS  Google Scholar 

  17. Cao JM, Chen LS, KenKnight BH, Ohara T, Lee MH, Tsai J, et al. Nerve sprouting and sudden cardiac death. Circ Res. 2000;86(7):816–21.

    Article  CAS  PubMed  Google Scholar 

  18. Miyauchi Y, al. e. Induction of atrial sympathetic nerve sprouting and increased vulnerability to atrial fibrillation by chronic left ventricular myocardial infarction. Circulation. 2001;104(II).

  19. Tan AY, Zhou S, Ogawa M, Song J, Chu M, Li H, et al. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation. 2008;118(9):916–25. doi:10.1161/circulationaha.108.776203.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Viskin S, Golovner M, Malov N, et al. Circadian variation of symptomatic paroxysmal atrial fibrillation. Data from almost 10 000 episodes. Eur Heart J. 1999;20:1429–34.

    Article  CAS  PubMed  Google Scholar 

  21. Sharifov OF, Fedorov VV, Beloshapko GG, Glukhov AV, Yushmanova AV, Rosenshtraukh LV. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J Am Coll Cardiol. 2004;43(3):483–90. doi:10.1016/j.jacc.2003.09.030.

    Article  CAS  PubMed  Google Scholar 

  22. Liu L, Nattel S. Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. Am J Physiol. 1997;273(2 Pt 2):H805–16.

    CAS  PubMed  Google Scholar 

  23. Nishida K, Maguy A, Sakabe M, Comtois P, Inoue H, Nattel S. The role of pulmonary veins vs. autonomic ganglia in different experimental substrates of canine atrial fibrillation. Cardiovasc Res. 2011;89(4):825–33. doi:10.1093/cvr/cvq332.

    Article  CAS  PubMed  Google Scholar 

  24. Marini C, De Santis F, Sacco S, Russo T, Olivieri L, Totaro R, et al. Contribution of atrial fibrillation to incidence and outcome of ischemic stroke: results from a population-based study. Stroke J Cereb Circ. 2005;36(6):1115–9. doi:10.1161/01.STR.0000166053.83476.4a.

    Article  Google Scholar 

  25. Camm AJ, Kirchhof P, Lip GY, Schotten U, Savelieva I, Ernst S, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J. 2010;31(19):2369–429. doi:10.1093/eurheartj/ehq278.

    Article  PubMed  Google Scholar 

  26. Scherlag BJ, Patterson E, Po SS. The neural basis of atrial fibrillation. J Electrocardiol. 2006;39(4 Suppl):S180–3. doi:10.1016/j.jelectrocard.2006.05.021.

    Article  PubMed  Google Scholar 

  27. Wijffels MC, Kirchhof CJ, Dorland R, Power J, Allessie MA. Electrical remodeling due to atrial fibrillation in chronically instrumented conscious goats: roles of neurohumoral changes, ischemia, atrial stretch, and high rate of electrical activation. Circulation. 1997;96(10):3710–20.

    Article  CAS  PubMed  Google Scholar 

  28. Moe GK, Abildskov JA. Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am Heart J. 1959;58(1):59–70.

    Article  CAS  PubMed  Google Scholar 

  29. Kapa S, Venkatachalam KL, Asirvatham SJ. The autonomic nervous system in cardiac electrophysiology: an elegant interaction and emerging concepts. Cardiol Rev. 2010;18(6):275–84. doi:10.1097/CRD.0b013e3181ebb152.

    Article  PubMed  Google Scholar 

  30. Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation. 2002;105(23):2753–9.

    Article  PubMed  Google Scholar 

  31. Head GA. Central imidazoline- and alpha 2-receptors involved in the cardiovascular actions of centrally acting antihypertensive agents. Ann N Y Acad Sci. 1999;881:279–86.

    Article  CAS  PubMed  Google Scholar 

  32. Trenk D, Wagner F, Jahnchen E, Planitz V. Pharmacokinetics of moxonidine after single and repeated daily doses in healthy volunteers. J Clin Pharmacol. 1987;27(12):988–93.

    Article  CAS  PubMed  Google Scholar 

  33. Kraft K, Vetter H. Twenty-four-hour blood pressure profiles in patients with mild-to-moderate hypertension: moxonidine versus captopril. J Cardiovasc Pharmacol. 1994;24 Suppl 1:S29–33.

    Article  CAS  PubMed  Google Scholar 

  34. Kuppers HE, Jager BA, Luszick JH, Grave MA, Hughes PR, Kaan EC. Placebo-controlled comparison of the efficacy and tolerability of once-daily moxonidine and enalapril in mild-to-moderate essential hypertension. J Hypertens. 1997;15(1):93–7.

    Article  CAS  PubMed  Google Scholar 

  35. Planitz V. Intraindividual comparison of moxonidine and prazosin in hypertensive patients. Eur J Clin Pharmacol. 1986;29(6):645–50.

    Article  CAS  PubMed  Google Scholar 

  36. Lepran I, Papp JG. Effect of moxonidine on arrhythmias induced by coronary artery occlusion and reperfusion. J Cardiovasc Pharmacol. 1994;24 Suppl 1:S9–15.

    Article  CAS  PubMed  Google Scholar 

  37. Mest HJ, Thomsen P, Raap A. Antiarrhythmic effect of the selective I1-imidazoline receptor modulator moxonidine on ouabain-induced cardiac arrhythmia in guinea pigs. Ann N Y Acad Sci. 1995;763:620–33.

    Article  CAS  PubMed  Google Scholar 

  38. Deftereos S, Giannopoulos G, Kossyvakis C, Efremidis M, Panagopoulou V, Raisakis K, et al. Effectiveness of moxonidine to reduce atrial fibrillation burden in hypertensive patients. Am J Cardiol. 2013;112(5):684–7. doi:10.1016/j.amjcard.2013.04.049. First study to show that a reduction of sympathetic activation with administration of moxonidine resulted in a decrease in AF burden in hypertensive patients with paroxysmal AF.

    Article  CAS  PubMed  Google Scholar 

  39. Giannopoulos G, Kossyvakis C, Efremidis M, Katsivas A, Panagopoulou V, Doudoumis K, et al. Central sympathetic inhibition to reduce postablation atrial fibrillation recurrences in hypertensive patients: a randomized, controlled study. Circulation. 2014;130(16):1346–52. doi:10.1161/circulationaha.114.010999. First study to demonstrate that moxonidine reduce post-ablation recurrence of AF in patients with hypertension who underwent pulmonary vein isolation for drug-refractory paroxysmal AF.

    Article  CAS  PubMed  Google Scholar 

  40. Schachter M, Luszick J, Jager B, Verboom C, Sohlke E. Safety and tolerability of moxonidine in the treatment of hypertension. Drug Saf. 1998;19(3):191–203.

    Article  CAS  PubMed  Google Scholar 

  41. Edwards LP, Brown-Bryan TA, McLean L, Ernsberger P. Pharmacological properties of the central antihypertensive agent, moxonidine. Cardiovasc Ther. 2012;30(4):199–208. doi:10.1111/j.1755-5922.2011.00268.x.

    Article  CAS  PubMed  Google Scholar 

  42. Cohn JN, Pfeffer MA, Rouleau J, Sharpe N, Swedberg K, Straub M, et al. Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON). Eur J Heart Fail. 2003;5(5):659–67.

    Article  CAS  PubMed  Google Scholar 

  43. Pocock S, Wilhelmsen L, Dickstein K, Francis G, Wittes J. The data monitoring experience in the MOXCON trial. Eur Heart J. 2004;25(22):1974–8. doi:10.1016/j.ehj.2004.09.015.

    Article  PubMed  Google Scholar 

  44. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur Heart J. 2012;33(14):1787–847. doi:10.1093/eurheartj/ehs104.

    Article  PubMed  Google Scholar 

  45. Honda N, Hirooka Y, Ito K, Matsukawa R, Shinohara K, Kishi T, et al. Moxonidine-induced central sympathoinhibition improves prognosis in rats with hypertensive heart failure. J Hypertens. 2013;31(11):2300–8. doi:10.1097/HJH.0b013e328364a2a1. discussion 8.

    Article  CAS  PubMed  Google Scholar 

  46. Ripley DP, Negrou K, Oliver JJ, Worthy G, Struthers AD, Plein S, et al. Aortic remodelling following the treatment and regression of hypertensive left ventricular hypertrophy: a cardiovascular magnetic resonance study. Clin Experiment Hyper (New York, NY : 1993). 2015;37(4):308–16. doi:10.3109/10641963.2014.960974.

    Google Scholar 

  47. Huggett RJ, Hogarth AJ, Mackintosh AF, Mary DA. Sympathetic nerve hyperactivity in non-diabetic offspring of patients with type 2 diabetes mellitus. Diabetologia. 2006;49(11):2741–4. doi:10.1007/s00125-006-0399-9.

    Article  CAS  PubMed  Google Scholar 

  48. Julius S, Jamerson K. Sympathetics, insulin resistance and coronary risk in hypertension: the ‘chicken-and-egg’ question. J Hypertens. 1994;12(5):495–502.

    Article  CAS  PubMed  Google Scholar 

  49. Masuo K, Katsuya T, Kawaguchi H, Fu Y, Rakugi H, Ogihara T, et al. Beta2-adrenoceptor polymorphisms relate to obesity through blunted leptin-mediated sympathetic activation. Am J Hypertens. 2006;19(10):1084–91. doi:10.1016/j.amjhyper.2006.02.015.

    Article  CAS  PubMed  Google Scholar 

  50. Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003;42(4):474–80. doi:10.1161/01.hyp.0000091371.53502.d3.

    Article  CAS  PubMed  Google Scholar 

  51. Palatini P, Vriz O, Nesbitt S, Amerena J, Majahalme S, Valentini M, et al. Parental hyperdynamic circulation predicts insulin resistance in offspring: the Tecumseh Offspring Study. Hypertension. 1999;33(3):769–74.

    Article  CAS  PubMed  Google Scholar 

  52. Alvarez GE, Beske SD, Ballard TP, Davy KP. Sympathetic neural activation in visceral obesity. Circulation. 2002;106(20):2533–6.

    Article  PubMed  Google Scholar 

  53. Grassi G, Seravalle G, Cattaneo BM, Bolla GB, Lanfranchi A, Colombo M, et al. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25(4 Pt 1):560–3.

    Article  CAS  PubMed  Google Scholar 

  54. Huggett RJ, Burns J, Mackintosh AF, Mary DA. Sympathetic neural activation in nondiabetic metabolic syndrome and its further augmentation by hypertension. Hypertension. 2004;44(6):847–52. doi:10.1161/01.HYP.0000147893.08533.d8.

    Article  CAS  PubMed  Google Scholar 

  55. Lambert E, Sari CI, Dawood T, Nguyen J, McGrane M, Eikelis N, et al. Sympathetic nervous system activity is associated with obesity-induced subclinical organ damage in young adults. Hypertension. 2010;56(3):351–8. doi:10.1161/hypertensionaha.110.155663.

    Article  CAS  PubMed  Google Scholar 

  56. Lambert E, Straznicky N, Eikelis N, Esler M, Dawood T, Masuo K, et al. Gender differences in sympathetic nervous activity: influence of body mass and blood pressure. J Hypertens. 2007;25(7):1411–9. doi:10.1097/HJH.0b013e3281053af4.

    Article  CAS  PubMed  Google Scholar 

  57. Lambert EA, Straznicky NE, Dixon JB, Lambert GW. Should the sympathetic nervous system be a target to improve cardiometabolic risk in obesity? Am J Physiol Heart Circ Physiol. 2015;309(2):H244–58. doi:10.1152/ajpheart.00096.2015.

    Article  CAS  PubMed  Google Scholar 

  58. Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J. 2009;30(7):850–6. doi:10.1093/eurheartj/ehn573.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003;88(11):5163–8. doi:10.1210/jc.2003-030698.

    Article  CAS  PubMed  Google Scholar 

  60. Sarin S, Wenger C, Marwaha A, Qureshi A, Go BD, Woomert CA, et al. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am J Cardiol. 2008;102(6):767–71. doi:10.1016/j.amjcard.2008.04.058.

    Article  PubMed  Google Scholar 

  61. Heyer CM, Kagel T, Lemburg SP, Bauer TT, Nicolas V. Lipomatous hypertrophy of the interatrial septum: a prospective study of incidence, imaging findings, and clinical symptoms. Chest. 2003;124(6):2068–73.

    Article  PubMed  Google Scholar 

  62. Isner JM, Swan 2nd CS, Mikus JP, Carter BL. Lipomatous hypertrophy of the interatrial septum: in vivo diagnosis. Circulation. 1982;66(2):470–3.

    Article  CAS  PubMed  Google Scholar 

  63. Sato Y, Matsuo S, Kusama J, Kunimasa T, Yoda S, Matsumoto N, et al. Lipomatous hypertrophy of the interatrial septum presenting as sick sinus syndrome. Int J Cardiol. 2007;119(2):280–1. doi:10.1016/j.ijcard.2006.07.161.

    Article  PubMed  Google Scholar 

  64. Shirani J, Roberts WC. Clinical, electrocardiographic and morphologic features of massive fatty deposits (“lipomatous hypertrophy”) in the atrial septum. J Am Coll Cardiol. 1993;22(1):226–38.

    Article  CAS  PubMed  Google Scholar 

  65. Al Chekakie MO, Welles CC, Metoyer R, Ibrahim A, Shapira AR, Cytron J, et al. Pericardial fat is independently associated with human atrial fibrillation. J Am Coll Cardiol. 2010;56(10):784–8. doi:10.1016/j.jacc.2010.03.071.

    Article  PubMed  Google Scholar 

  66. Thanassoulis G, Massaro JM, O’Donnell CJ, Hoffmann U, Levy D, Ellinor PT, et al. Pericardial fat is associated with prevalent atrial fibrillation: The Framingham Heart Study. Circ Arrhythm Electrophysiol. 2010;3(4):345–50. doi:10.1161/circep.109.912055. Recent cross-sectional analysis of the Framingham Heart Study showing that higher pericardial fat volumes were associated with about 40% higher odds of prevalent AF.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Friedman DJ, Wang N, Meigs JB, Hoffmann U, Massaro JM, Fox CS, et al. Pericardial fat is associated with atrial conduction: the Framingham Heart Study. J Am Heart Assoc. 2014;3(2), e000477. doi:10.1161/jaha.113.000477.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Chao TF, Hung CL, Tsao HM, Lin YJ, Yun CH, Lai YH, et al. Epicardial adipose tissue thickness and ablation outcome of atrial fibrillation. PLoS One. 2013;8(9), e74926. doi:10.1371/journal.pone.0074926.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Wong CX, Abed HS, Molaee P, Nelson AJ, Brooks AG, Sharma G, et al. Pericardial fat is associated with atrial fibrillation severity and ablation outcome. J Am Coll Cardiol. 2011;57(17):1745–51. doi:10.1016/j.jacc.2010.11.045.

    Article  PubMed  Google Scholar 

  70. Fox CS, Gona P, Hoffmann U, Porter SA, Salton CJ, Massaro JM, et al. Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation. 2009;119(12):1586–91. doi:10.1161/circulationaha.108.828970.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460–6. doi:10.1161/01.cir.0000099542.57313.c5.

    Article  PubMed  Google Scholar 

  72. 2015. RCMMedce, Study. ABEFTaPCADACC, Faghihi S1 V-FA, Parsaee M3, Saedi S1, Ghadrdoost B1.

  73. Marcus GM, Whooley MA, Glidden DV, Pawlikowska L, Zaroff JG, Olgin JE. Interleukin-6 and atrial fibrillation in patients with coronary artery disease: data from the heart and soul study. Am Heart J. 2008;155(2):303–9. doi:10.1016/j.ahj.2007.09.006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Tselentakis EV, Woodford E, Chandy J, Gaudette GR, Saltman AE. Inflammation effects on the electrical properties of atrial tissue and inducibility of postoperative atrial fibrillation. J Surg Res. 2006;135(1):68–75. doi:10.1016/j.jss.2006.03.024.

    Article  CAS  PubMed  Google Scholar 

  75. Faghihi S, Vasheghani-Farahani A, Parsaee M, Saedi S, Ghadrdoost B. Association between epicardial fat thickness and premature coronary artery disease: a case control study. Res Cardiovas Med. 2015;4(2), e25679. doi:10.5812/cardiovascmed.4(2)2015.25679.

    Article  Google Scholar 

  76. Haberka M, Gasior Z. A carotid extra-media thickness, PATIMA combined index and coronary artery disease: comparison with well-established indexes of carotid artery and fat depots. Atherosclerosis. 2015;243(1):307–13. doi:10.1016/j.atherosclerosis.2015.09.022.

    Article  CAS  PubMed  Google Scholar 

  77. Haenni A, Lithell H. Moxonidine improves insulin sensitivity in insulin-resistant hypertensives. J Hypertens Suppl Off J Int Soc Hyper. 1999;17(3):S29–35.

    CAS  Google Scholar 

  78. Sharma AM, Wagner T, Marsalek P. Moxonidine in the treatment of overweight and obese patients with the metabolic syndrome: a postmarketing surveillance study. J Hum Hypertens. 2004;18(9):669–75. doi:10.1038/sj.jhh.1001676.

    Article  CAS  PubMed  Google Scholar 

  79. Chazova I, Almazov VA, Shlyakhto E. Moxonidine improves glycaemic control in mildly hypertensive, overweight patients: a comparison with metformin. Diabetes Obes Metab. 2006;8(4):456–65. doi:10.1111/j.1463-1326.2006.00606.x.

    Article  CAS  PubMed  Google Scholar 

  80. Chazova I, Schlaich MP. Improved hypertension control with the imidazoline agonist moxonidine in a multinational metabolic syndrome population: principal results of the MERSY study. Int J Hypertens. 2013;2013:541689. doi:10.1155/2013/541689.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Rajendran PS, Buch E, Shivkumar K. Marshaling the autonomic nervous system for treatment of atrial fibrillation. J Am Coll Cardiol. 2014;63(18):1902–3. doi:10.1016/j.jacc.2014.01.033.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Reichlin T, Michaud GF. Our approach to maximizing the durability of pulmonary vein isolation during a paroxysmal atrial fibrillation ablation procedure. J Cardiovasc Electrophysiol. 2012;23(11):1272–6. doi:10.1111/j.1540-8167.2012.02414.x.

    Article  PubMed  Google Scholar 

  83. Calkins H, Kuck KH, Cappato R, Brugada J, Camm AJ, Chen SA, et al. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed by the governing bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia Pacific Heart Rhythm Society, and the Heart Rhythm Society. Heart Rhythm. 2012;9(4):632–96.e21. doi:10.1016/j.hrthm.2011.12.016.

    Article  PubMed  Google Scholar 

  84. Esler MD, Bohm M, Sievert H, Rump CL, Schmieder RE, Krum H, et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J. 2014;35(26):1752–9. doi:10.1093/eurheartj/ehu209.

    Article  PubMed  Google Scholar 

  85. Esler MD, Krum H, Schlaich M, Schmieder RE, Bohm M, Sobotka PA. Renal sympathetic denervation for treatment of drug-resistant hypertension: one-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 2012;126(25):2976–82. doi:10.1161/circulationaha.112.130880.

    Article  CAS  PubMed  Google Scholar 

  86. Howard JP, Nowbar AN, Francis DP. Size of blood pressure reduction from renal denervation: insights from meta-analysis of antihypertensive drug trials of 4,121 patients with focus on trial design: the CONVERGE report. Heart. 2013;99(21):1579–87. doi:10.1136/heartjnl-2013-304238.

    Article  PubMed  Google Scholar 

  87. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet (London, England). 2009;373(9671):1275–81. doi:10.1016/s0140-6736(09)60566-3.

    Article  Google Scholar 

  88. Krum H, Schlaich MP, Sobotka PA, Bohm M, Mahfoud F, Rocha-Singh K, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the symplicity HTN-1 study. Lancet (London, England). 2014;383(9917):622–9. doi:10.1016/s0140-6736(13)62192-3.

    Article  Google Scholar 

  89. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361(9):932–4. doi:10.1056/NEJMc0904179.

    Article  CAS  PubMed  Google Scholar 

  90. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet (London, England). 2010;376(9756):1903–9. doi:10.1016/s0140-6736(10)62039-9.

    Article  Google Scholar 

  91. Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123(18):1940–6. doi:10.1161/circulationaha.110.991869.

    Article  CAS  PubMed  Google Scholar 

  92. Sobotka PA, Mahfoud F, Schlaich MP, Hoppe UC, Bohm M, Krum H. Sympatho-renal axis in chronic disease. Clin Res Cardiol Off J German Cardiac Soc. 2011;100(12):1049–57. doi:10.1007/s00392-011-0335-y.

    Article  Google Scholar 

  93. Witkowski A, Prejbisz A, Florczak E, Kadziela J, Sliwinski P, Bielen P, et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension. 2011;58(4):559–65. doi:10.1161/hypertensionaha.111.173799.

    Article  CAS  PubMed  Google Scholar 

  94. Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger HR, Wirth K, et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60(1):172–8. doi:10.1161/hypertensionaha.112.191965.

    Article  CAS  PubMed  Google Scholar 

  95. Linz D, Mahfoud F, Schotten U, Ukena C, Hohl M, Neuberger HR, et al. Renal sympathetic denervation provides ventricular rate control but does not prevent atrial electrical remodeling during atrial fibrillation. Hypertension. 2013;61(1):225–31. doi:10.1161/hypertensionaha.111.00182.

    Article  CAS  PubMed  Google Scholar 

  96. Himmel F, Weil J, Reppel M, Mortensen K, Franzen K, Ansgar L, et al. Improved heart rate dynamics in patients undergoing percutaneous renal denervation. J Clin Hypertens (Greenwich). 2012;14(9):654–5. doi:10.1111/j.1751-7176.2012.00658.x.

    Article  Google Scholar 

  97. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60(13):1163–70. doi:10.1016/j.jacc.2012.05.036.

    Article  PubMed  Google Scholar 

  98. Joshi S, Choi AD, Kamath GS, Raiszadeh F, Marrero D, Badheka A, et al. Prevalence, predictors, and prognosis of atrial fibrillation early after pulmonary vein isolation: findings from 3 months of continuous automatic ECG loop recordings. J Cardiovasc Electrophysiol. 2009;20(10):1089–94. doi:10.1111/j.1540-8167.2009.01506.x.

    Article  PubMed  Google Scholar 

  99. Ahmed H, Miller MA, Dukkipati SR, Cammack S, Koruth JS, Gangireddy S, et al. Adjunctive renal sympathetic denervation to modify hypertension as upstream therapy in the treatment of atrial fibrillation (H-FIB) study: clinical background and study design. J Cardiovasc Electrophysiol. 2013;24(5):503–9. doi:10.1111/jce.12095.

    Article  PubMed  Google Scholar 

  100. Health USNIo. Adjunctive Renal Sympathetic Denervation to Modify Hypertension as Upstream Therapy in the Treatment of Atrial Fibrillation. https://clinicaltrials.gov/ct2/results?term=H-Fib&Search=Search. Accessed 30 October 2015.

  101. Qiu M, Yin Y, Shan Q. Renal sympathetic denervation versus antiarrhythmic drugs for drug-resistant hypertension and symptomatic atrial fibrillation (RSDforAF) trial: study protocol for a randomized controlled trial. Trials. 2013;14:168. doi:10.1186/1745-6215-14-168.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Pokushalov E, Romanov A, Katritsis DG, Artyomenko S, Bayramova S, Losik D, et al. Renal denervation for improving outcomes of catheter ablation in patients with atrial fibrillation and hypertension: early experience. Heart Rhythm. 2014;11(7):1131–8. doi:10.1016/j.hrthm.2014.03.055.

    Article  PubMed  Google Scholar 

  103. Vollmann D, Sossalla S, Schroeter MR, Zabel M. Renal artery ablation instead of pulmonary vein ablation in a hypertensive patient with symptomatic, drug-resistant, persistent atrial fibrillation. Clin Res Cardiol Off J German Cardiac Soc. 2013;102(4):315–8. doi:10.1007/s00392-012-0529-y.

    Article  Google Scholar 

  104. Ukena C, Bauer A, Mahfoud F, Schreieck J, Neuberger HR, Eick C, et al. Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol Off J German Cardiac Soc. 2012;101(1):63–7. doi:10.1007/s00392-011-0365-5. A first-in-man experience in 2 patients with chronic heart failure and electrical storm, in which RDN was performed as an experimental attempt to reduce VT occurrence.

    Article  Google Scholar 

  105. Scholz EP, Raake P, Thomas D, Vogel B, Katus HA, Blessing E. Rescue renal sympathetic denervation in a patient with ventricular electrical storm refractory to endo- and epicardial catheter ablation. Clin Res Cardiol Off J German Cardiac Soc. 2015;104(1):79–84. doi:10.1007/s00392-014-0749-4.

    Article  Google Scholar 

  106. Health USNIo. REnal SympathetiC Denervation to sUpprEss Ventricular Tachyarrhythmias. https://clinicaltrials.gov/ct2/results?term=rescue-vt. Accessed 26 october 2015.

  107. Health USNIo. REnal Sympathetic dEnervaTion as an a Adjunct to Catheter-based VT Ablation. https://clinicaltrials.gov/ct2/results?term=RESET-VT&Search=Search. Accessed 26 october 2015.

  108. Health USNIo. Renal denervation in patient undergoing VT ablation: combined renal denervation and VT ablation vs. simply VT ablation. https://clinicaltrials.gov/ct2/results?term=ardevat&Search=Search. Accessed 26 october 2015.

  109. Esler M, Straznicky N, Eikelis N, Masuo K, Lambert G, Lambert E. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension. 2006;48(5):787–96. doi:10.1161/01.hyp.0000242642.42177.49.

    Article  CAS  PubMed  Google Scholar 

  110. Esler M, In: Zanchetti A, Birkenhager W. Looking at the sympathetic nervous system as a primary source. In: Elsevier, editor. Handbook of Hypertension: Hypertension Research in the Twentieth Century. Amsterdam2004. p. 81-103.

  111. Prichard BN, Graham BR, Owens CW. Moxonidine: a new antiadrenergic antihypertensive agent. J Hypertens Suppl Off J Int Soc Hyper. 1999;17(3):S41–54.

    CAS  Google Scholar 

  112. Prichard BN, Graham BR. The use of moxonidine in the treatment of hypertension. J Hypertens Suppl Off J Int Soc Hyper. 1997;15(1):S47–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus P. Schlaich.

Ethics declarations

Conflict of Interest

Dr. Schlaich is supported by career fellowships from the NHMRC, is an investigator in studies sponsored by Medtronic, serves on scientific advisory boards for Abbott (formerly Solvay) Pharmaceuticals, BI, Novartis Pharmaceuticals, and Medtronic and has received honoraria and travel support from Abbott, BI, Servier, Novartis, and Medtronic. Drs. Cagnoni, Destro, Bontempelli, Locatelli, and Hering declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Device-Based Approaches for Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cagnoni, F., Destro, M., Bontempelli, E. et al. Central Sympathetic Inhibition: a Neglected Approach for Treatment of Cardiac Arrhythmias?. Curr Hypertens Rep 18, 13 (2016). https://doi.org/10.1007/s11906-015-0619-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0619-0

Keywords

Navigation