Skip to main content

Advertisement

Log in

Drug Interactions and Antiretroviral Drug Monitoring

  • Complications of Antiretroviral Therapy (JM Kilby, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Owing to the improved longevity afforded by combination antiretroviral therapy (cART), HIV-infected individuals are developing several non-AIDS-related comorbid conditions. Consequently, medical management of the HIV-infected population is increasingly complex, with a growing list of potential drug-drug interactions (DDIs). This article reviews some of the most relevant and emerging potential interactions between antiretroviral medications and other agents. The most common DDIs are those involving protease inhibitors or non-nucleoside reverse transcriptase inhibitors, which alter the cytochrome P450 enzyme system and/or drug transporters such as p-glycoprotein. Of note are the new agents for the treatment of chronic hepatitis C virus infection. These new classes of drugs and others drugs that are increasingly used in this patient population represent a significant challenge with regard to achieving the goals of effective HIV suppression and minimization of drug-related toxicities. Awareness of DDIs and a multidisciplinary approach are imperative in reaching these goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Palella Jr FJ, Baker RK, Moorman AC, et al. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr. 2006;43:27–34.

    Article  CAS  PubMed  Google Scholar 

  2. Luther VP, Wilkin AM. HIV infection in older adults. Clin Geriatr Med. 2007;23:567–83. vii.

    Article  PubMed  Google Scholar 

  3. Goulet JL, Fultz SL, Rimland D, et al. Aging and infectious diseases: do patterns of comorbidity vary by HIV status, age, and HIV severity? Clin Infect Dis. 2007;45:1593–601.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Marzolini C, Elzi L, Gibbons S, et al. Prevalence of comedications and effect of potential drug-drug interactions in the Swiss HIV Cohort Study. Antivir Ther. 2010;15:413–23.

    Article  CAS  PubMed  Google Scholar 

  5. von Moltke LL, Greenblatt DJ, Grassi JM, et al. Protease inhibitors as inhibitors of human cytochromes P450: high risk associated with ritonavir. J Clin Pharmacol. 1998;38:106–11.

    Article  Google Scholar 

  6. Minuesa G, Huber-Ruano I, Pastor-Anglada M, Koepsell H, Clotet B, Martinez-Picado J. Drug uptake transporters in antiretroviral therapy. Pharmacol Ther. 2011;132:268–79.

    Article  CAS  PubMed  Google Scholar 

  7. Kim RB. Drug transporters in HIV Therapy. Top HIV Med. 2003;11:136–9.

    PubMed  Google Scholar 

  8. Belanger AS, Caron P, Harvey M, Zimmerman PA, Mehlotra RK, Guillemette C. Glucuronidation of the antiretroviral drug efavirenz by UGT2B7 and an in vitro investigation of drug-drug interaction with zidovudine. Drug Metab Dispos. 2009;37:1793–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Mano Y, Usui T, Kamimura H. Inhibitory potential of nonsteroidal anti-inflammatory drugs on UDP-glucuronosyltransferase 2B7 in human liver microsomes. Eur J Clin Pharmacol. 2007;63:211–6.

    Article  CAS  PubMed  Google Scholar 

  10. Jimenez-Nacher I, Alvarez E, Morello J, Rodriguez-Novoa S, de Andres S, Soriano V. Approaches for understanding and predicting drug interactions in human immunodeficiency virus-infected patients. Expert Opin Drug Metab Toxicol. 2011;7:457–77. This paper comprehensively reviews potential DDIs among antiretroviral medications and other drugs and describes potential mechanisms for these DDIs.

    Article  CAS  PubMed  Google Scholar 

  11. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. Available at:http://aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed 5 Apr 2014. This panel report provides comprehensive guidelines for the antiretroviral treatment of HIV-infected patients, which are updated regularly by a panel of experts.It includes helpful tables for various DDIs.

  12. Jimenez-Nacher I, Garcia B, Barreiro P, et al. Trends in the prescription of antiretroviral drugs and impact on plasma HIV-RNA measurements. J Antimicrob Chemother. 2008;62:816–22.

    Article  CAS  PubMed  Google Scholar 

  13. Baxi SM, Greenblatt RM, Bacchetti P, et al. Common clinical conditions—age, low BMI, ritonavir use, mild renal impairment—affect tenofovir pharmacokinetics in a large cohort of HIV-infected women. AIDS. 2014;28:59–66.

    Article  CAS  PubMed  Google Scholar 

  14. Pruvost A, Negredo E, Theodoro F, et al. Pilot pharmacokinetic study of human immunodeficiency virus-infected patients receiving tenofovir disoproxil fumarate (TDF): investigation of systemic and intracellular interactions between TDF and abacavir, lamivudine, or lopinavir-ritonavir. Antimicrob Agents Chemother. 2009;53:1937–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kearney BP, Mathias A, Mittan A, Sayre J, Ebrahimi R, Cheng AK. Pharmacokinetics and safety of tenofovir disoproxil fumarate on coadministration with lopinavir/ritonavir. J Acquir Immune Defic Syndr. 2006;43:278–83.

    Article  CAS  PubMed  Google Scholar 

  16. Izzedine H, Harris M, Perazella MA. The nephrotoxic effects of HAART. Nat Rev Nephrol. 2009;5:563–73.

    Article  CAS  PubMed  Google Scholar 

  17. Cihlar T, Ray AS, Laflamme G, et al. Molecular assessment of the potential for renal drug interactions between tenofovir and HIV protease inhibitors. Antivir Ther. 2007;12:267–72.

    CAS  PubMed  Google Scholar 

  18. Tong L, Phan TK, Robinson KL, et al. Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. Antimicrob Agents Chemother. 2007;51:3498–504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Soriano V, Arasteh K, Migrone H, et al. Nevirapine vs atazanavir/ritonavir, each combined with tenofovir disoproxil fumarate/emtricitabine, in antiretroviral-naive HIV-1 patients: the ARTEN Trial. Antivir Ther. 2011;16:339–48.

    Article  CAS  PubMed  Google Scholar 

  20. Lockman S, Hughes M, Sawe F, et al. Nevirapine- vs lopinavir/ritonavir-based initial therapy for HIV-1 infection among women in Africa: a randomized trial. PLoS Med. 2012;9:e1001236.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sherman KE, Rouster SD, Chung RT, Rajicic N. Hepatitis C Virus prevalence among patients infected with human immunodeficiency virus: a cross-sectional analysis of the US adult AIDS Clinical Trials Group. Clin Infect Dis. 2002;34:831–7.

    Article  PubMed  Google Scholar 

  22. van der Helm JJ, Prins M, del Amo J, et al. The hepatitis C epidemic among HIV-positive MSM: incidence estimates from 1990 to 2007. AIDS. 2011;25:1083–91.

    Article  PubMed  Google Scholar 

  23. Brau N, Salvatore M, Rios-Bedoya CF, et al. Slower fibrosis progression in HIV/HCV-coinfected patients with successful HIV suppression using antiretroviral therapy. J Hepatol. 2006;44:47–55.

    Article  PubMed  Google Scholar 

  24. Thein HH, Yi Q, Dore GJ, Krahn MD. Natural history of hepatitis C virus infection in HIV-infected individuals and the impact of HIV in the era of highly active antiretroviral therapy: a meta-analysis. AIDS. 2008;22:1979–91.

    Article  PubMed  Google Scholar 

  25. Pawlotsky JM. New Hepatitis C therapies: the toolbox, strategies, and challenges. Gastroenterology. 2014;146:1176–92. This review describes the new antiviral agents for the treatment of HCV, including those which are already FDA-approved and those which are still in development.

  26. Garg V, Kauffman RS, Beaumont M, van Heeswijk RP. Telaprevir: pharmacokinetics and drug interactions. Antivir Ther. 2012;17:1211–21.

    Article  CAS  PubMed  Google Scholar 

  27. Hulskotte EG, Feng HP, Xuan F, et al. Pharmacokinetic interactions between the hepatitis C virus protease inhibitor boceprevir and ritonavir-boosted HIV-1 protease inhibitors atazanavir, darunavir, and lopinavir. Clin Infect Dis. 2013;56:718–26. This paper showed the important interactions between the novel anti-HCV agent, boceprevir, and several RTV-boosted PIs.

    Article  CAS  PubMed  Google Scholar 

  28. Vertex Pharmaceuticals: Incivek (telaprevir) prescribing information [online]. Available at: http://pi.vrtx.com/files/uspi_telaprevir.pdf. Accessed 16 Apr 2014.

  29. Gutierrez-Valencia A, Ruiz-Valderas R, Torres-Cornejo A, et al. Role of ritonavir in the drug interactions between telaprevir and ritonavir-boosted atazanavir. Clin Infect Dis. 2014;58:268–73. This paper provided evidence that supports the important role of RTV in the observed interactions between telaprevir and RTV-boosted atazanavir and likely other RTV-boosted PIs.

    Article  CAS  PubMed  Google Scholar 

  30. Janssen: Olysio (simeprevir) capsules. Available at: http://www.olysio.com/shared/product/olysio/prescribing-information.pdf. Accessed 16 Apr 2014.

  31. Merck: Victrelis (boceprevir) capsules prescribing information. Available at: http://www.merck.com/product/usa/pi_circulars/v/victrelis/victrelis_pi.pdf. Accessed 16 Apr 2014.

  32. Gilead: Solvadi (sofosbuvir) tablets. Prescribing information. Available at: http://www.gilead.com/~/media/Files/pdfs/medicines/liver-disease/sovaldi/sovaldi_pi.pdf. Accessed 16 Apr 2014.

  33. Bifano M, Hwang C, Oosterhuis B, et al. Assessment of pharmacokinetic interactions of the HCV NS5A replication complex inhibitor daclatasvir with antiretroviral agents: ritonavir-boosted atazanavir, efavirenz and tenofovir. Antivir Ther. 2013;18:931–40.

    Article  CAS  PubMed  Google Scholar 

  34. Seaberg EC, Munoz A, Lu M, et al. Association between highly active antiretroviral therapy and hypertension in a large cohort of men followed from 1984 to 2003. AIDS. 2005;19:953–60.

    Article  PubMed  Google Scholar 

  35. Medina-Torne S, Ganesan A, Barahona I, Crum-Cianflone NF. Hypertension is common among HIV-infected persons, but not associated with HAART. J Int Assoc Phys AIDS Care. 2012;11:20–5.

    Article  Google Scholar 

  36. Baekken M, Os I, Sandvik L, Oektedalen O. Hypertension in an urban HIV-positive population compared with the general population: influence of combination antiretroviral therapy. J Hypertens. 2008;26:2126–33.

    Article  CAS  PubMed  Google Scholar 

  37. Bergersen BM, Sandvik L, Dunlop O, Birkeland K, Bruun JN. Prevalence of hypertension in HIV-positive patients on highly active retroviral therapy (HAART) compared with HAART-naive and HIV-negative controls: results from a Norwegian study of 721 patients. Eur J Clin Microbiol Infect Dis. 2003;22:731–6.

    Article  CAS  PubMed  Google Scholar 

  38. Peyriere H, Eiden C, Macia JC, Reynes J. Antihypertensive drugs in patients treated with antiretrovirals. Ann Pharmacother. 2012;46:703–9.

    Article  PubMed  Google Scholar 

  39. Sica DA. Calcium channel blocker class heterogeneity: select aspects of pharmacokinetics and pharmacodynamics. J Clin Hypertens. 2005;7:21–6.

    Article  CAS  Google Scholar 

  40. Siest G, Jeannesson E, Visvikis-Siest S. Enzymes and pharmacogenetics of cardiovascular drugs. Clin Chim Acta. 2007;381:26–31.

    Article  CAS  PubMed  Google Scholar 

  41. Liedtke MD, Rathbun RC. Warfarin-antiretroviral interactions. Ann Pharmacother. 2009;43:322–8.

    Article  CAS  PubMed  Google Scholar 

  42. Anderson AM, Chane T, Patel M, Chen S, Xue W, Easley KA. Warfarin therapy in the HIV medical home model: low rates of therapeutic anticoagulation despite adherence and differences in dosing based on specific antiretrovirals. AIDS Patient Care STDS. 2012;26:454–62.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Egan G, Hughes CA, Ackman ML. Drug interactions between antiplatelet or novel oral anticoagulant medications and antiretroviral medications. Ann Pharmacother. 2014;48:734-40.

  44. Mueck W, Kubitza D, Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol. 2013;76:455–66.

    Article  CAS  PubMed  Google Scholar 

  45. Hagihara K, Kazui M, Kurihara A, et al. A possible mechanism for the differences in efficiency and variability of active metabolite formation from thienopyridine antiplatelet agents, prasugrel and clopidogrel. Drug Metab Dispos. 2009;37:2145–52.

    Article  CAS  PubMed  Google Scholar 

  46. Ancrenaz V, Deglon J, Samer C, et al. Pharmacokinetic interaction between prasugrel and ritonavir in healthy volunteers. Basic Clin Pharmacol Toxicol. 2013;112:132–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Ferri N, Corsini A, Bellosta S. Pharmacology of the new P2Y12 receptor inhibitors: insights on pharmacokinetic and pharmacodynamic properties. Drugs. 2013;73:1681–709.

    Article  CAS  PubMed  Google Scholar 

  48. Dube M, Fenton M. Lipid abnormalities. Clin Infect Dis. 2003;36:S79–83.

    Article  PubMed  Google Scholar 

  49. Chauvin B, Drouot S, Barrail-Tran A, Taburet AM. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors. Clin Pharmacokinet. 2013;52:815–31.

    Article  CAS  PubMed  Google Scholar 

  50. Dube MP, Stein JH, Aberg JA, et al. Guidelines for the evaluation and management of dyslipidemia in human immunodeficiency virus (HIV)-infected adults receiving antiretroviral therapy: recommendations of the HIV Medical Association of the Infectious Disease Society of America and the Adult AIDS Clinical Trials Group. Clin Infect Dis. 2003;37:613–27.

    Article  PubMed  Google Scholar 

  51. Aquilante CL, Kiser JJ, Anderson PL, et al. Influence of SLCO1B1 polymorphisms on the drug-drug interaction between darunavir/ritonavir and pravastatin. J Clin Pharmacol. 2012;52:1725–38.

    Article  CAS  PubMed  Google Scholar 

  52. Samineni D, Desai PB, Sallans L, Fichtenbaum CJ. Steady-state pharmacokinetic interactions of darunavir/ritonavir with lipid-lowering agent rosuvastatin. J Clin Pharmacol. 2012;52:922–31.

    Article  CAS  PubMed  Google Scholar 

  53. Aslangul E, Assoumou L, Bittar R, et al. Rosuvastatin vs pravastatin in dyslipidemic HIV-1-infected patients receiving protease inhibitors: a randomized trial. AIDS. 2010;24:77–83.

    Article  CAS  PubMed  Google Scholar 

  54. Custodio JM, Wang H, Hao J, et al. Pharmacokinetics of cobicistat boosted-elvitegravir administered in combination with rosuvastatin. J Clin Pharmacol. 2014;54:649–56.

  55. Hirano M, Maeda K, Shitara Y, Sugiyama Y. Drug-drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab Dispos. 2006;34:1229–36.

    Article  CAS  PubMed  Google Scholar 

  56. Morgan RE, Campbell SE, Suehira K, Sponseller CA, Yu CY, Medlock MM. Effects of steady-state lopinavir/ritonavir on the pharmacokinetics of pitavastatin in healthy adult volunteers. J Acquir Immune Defic Syndr. 2012;60:158–64.

    Article  CAS  PubMed  Google Scholar 

  57. Sponseller CA. Pitavastatin 4 mg provides greater LDL-C reduction compared with pravastatin 40 mg over 12 weeks of treatment in HIV-infected adults with dyslipidemia. In: 20th Conference on Retroviruses & Opportunistic Infections: Atlanta, GA; 2013.

  58. Stock PG, Barin B, Murphy B, et al. Outcomes of kidney transplantation in HIV-infected recipients. N Engl J Med. 2010;363:2004–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Roland ME, Barin B, Carlson L, et al. HIV-infected liver and kidney transplant recipients: 1- and 3-year outcomes. Am J Transplant. 2008;8:355–65.

    Article  CAS  PubMed  Google Scholar 

  60. Gathogo EN, Hamzah L, Hilton R, et al. Kidney transplantation in HIV-positive adults: the UK experience. Int J STD Aids. 2014;25:57–66.

    Article  PubMed  Google Scholar 

  61. Schiff J, Cole E, Cantarovich M. Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin J Am Soc Nephrol. 2007;2:374–84.

    Article  CAS  PubMed  Google Scholar 

  62. Teicher E, Vincent I, Bonhomme-Faivre L, et al. Effect of highly active antiretroviral therapy on tacrolimus pharmacokinetics in hepatitis C virus and HIV co-infected liver transplant recipients in the ANRS HC-08 study. Clin Pharmacokinet. 2007;46:941–52.

    Article  CAS  PubMed  Google Scholar 

  63. Frassetto L, Baluom M, Jacobsen W, et al. Cyclosporine pharmacokinetics and dosing modifications in human immunodeficiency virus-infected liver and kidney transplant recipients. Transplantation. 2005;80:13–7.

    Article  CAS  PubMed  Google Scholar 

  64. Frassetto LA, Browne M, Cheng A, et al. Immunosuppressant pharmacokinetics and dosing modifications in HIV-1 infected liver and kidney transplant recipients. Am J Transplant. 2007;7:2816–20.

    Article  CAS  PubMed  Google Scholar 

  65. Jain AK, Venkataramanan R, Fridell JA, et al. Nelfinavir, a protease inhibitor, increases sirolimus levels in a liver transplantation patient: a case report. Liver Transpl. 2002;8:838–40.

    Article  PubMed  Google Scholar 

  66. Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 1998;34:429–55.

    Article  CAS  PubMed  Google Scholar 

  67. Sankatsing SU, Hoggard PG, Huitema AD, et al. Effect of mycophenolate mofetil on the pharmacokinetics of antiretroviral drugs and on intracellular nucleoside triphosphate pools. Clin Pharmacokinet. 2004;43:823–32.

    Article  CAS  PubMed  Google Scholar 

  68. Margolis D, Heredia A, Gaywee J, Oldach D, Drusano G, Redfield R. Abacavir and mycophenolic acid, an inhibitor of inosine monophosphate dehydrogenase, have profound and synergistic anti-HIV activity. J Acquir Immune Defic Syndr. 1999;21:362–70.

    Article  CAS  PubMed  Google Scholar 

  69. Margolis DM, Kewn S, Coull JJ, et al. The addition of mycophenolate mofetil to antiretroviral therapy including abacavir is associated with depletion of intracellular deoxyguanosine triphosphate and a decrease in plasma HIV-1 RNA. J Acquir Immune Defic Syndr. 2002;31:45–9.

    Article  CAS  PubMed  Google Scholar 

  70. Trkulja V, Lalic Z, Nad-Skegro S, et al. Effect of cyclosporine on steady-state pharmacokinetics of MPA in renal transplant recipients is not affected by the MPA formulation: analysis based on therapeutic drug monitoring data. Ther Drug Monit. 2014. doi:10.1097/FTD.0000000000000052.

  71. Kassahun K, McIntosh I, Cui D, et al. Metabolism and disposition in humans of raltegravir (MK-0518), an anti-AIDS drug targeting the human immunodeficiency virus 1 integrase enzyme. Drug Metab Dispos. 2007;35:1657–63.

    Article  CAS  PubMed  Google Scholar 

  72. Tricot L, Teicher E, Peytavin G, et al. Safety and efficacy of raltegravir in HIV-infected transplant patients cotreated with immunosuppressive drugs. Am J Transplant. 2009;9:1946–52.

    Article  CAS  PubMed  Google Scholar 

  73. McColl DJ, Chen X. Strand transfer inhibitors of HIV-1 integrase: bringing in a new era of antiretroviral therapy. Antiviral Res. 2010;85:101–18.

    Article  CAS  PubMed  Google Scholar 

  74. Kiser JJ, Bumpass JB, Meditz AL, et al. Effect of antacids on the pharmacokinetics of raltegravir in human immunodeficiency virus-seronegative volunteers. Antimicrob Agents Chemother. 2010;54:4999–5003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Patel P, Song I, Borland J, et al. Pharmacokinetics of the HIV integrase inhibitor S/GSK1349572 co-administered with acid-reducing agents and multivitamins in healthy volunteers. J Antimicrob Chemother. 2011;66:1567–72.

    Article  CAS  PubMed  Google Scholar 

  76. Ramanathan S, Mathias A, Wei X, et al. Pharmacokinetics of once-daily boosted elvitegravir when administered in combination with acid-reducing agents. J Acquir Immune Defic Syndr. 2013;64:45–50. This study demonstrated that boosted elvitegravirinteracts with antacids but notwith H 2 R-blockers or PPis. Its interaction with antacid is likely due to chelation of divalent ions.

    Article  CAS  PubMed  Google Scholar 

  77. Wang X, Boffito M, Zhang J, et al. Effects of the H2-receptor antagonist famotidine on the pharmacokinetics of atazanavir-ritonavir with or without tenofovir in HIV-infected patients. AIDS Patient Care STDS. 2011;25:509–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. McCabe SM, Smith PF, Ma Q, Morse GD. Drug interactions between proton pump inhibitors and antiretroviral drugs. Expert Opin Drug Metab Toxicol. 2007;3:197–207.

    Article  CAS  PubMed  Google Scholar 

  79. Ramanathan S, Mathias AA, German P, Kearney BP. Clinical pharmacokinetic and pharmacodynamic profile of the HIV integrase inhibitor elvitegravir. Clin Pharmacokinet. 2011;50:229–44.

    Article  CAS  PubMed  Google Scholar 

  80. Iwamoto M, Wenning LA, Nguyen BY, et al. Effects of omeprazole on plasma levels of raltegravir. Clin Infect Dis. 2009;48:489–92.

    Article  CAS  PubMed  Google Scholar 

  81. Pau AK. Clinical management of drug interaction with antiretroviral agents. Curr Opin HIV AIDS. 2008;3:319–24.

    Article  PubMed  Google Scholar 

  82. Krakower D, Kwan CK, Yassa DS, Colvin RA. iAIDS: HIV-related internet resources for the practicing clinician. Clin Infect Dis. 2010;51:813–22. This article evaluates several online resources, which are clinically useful in the management of potential DDIs among HIV-infected patients.

    Article  PubMed  Google Scholar 

  83. Haas DW. Can responses to antiretroviral therapy be improved by therapeutic drug monitoring? Clin Infect Dis. 2006;42:1197–9.

    Article  CAS  PubMed  Google Scholar 

  84. Nettles RE, Kieffer TL, Parsons T, et al. Marked intraindividual variability in antiretroviral concentrations may limit the utility of therapeutic drug monitoring. Clin Infect Dis. 2006;42:1189–96.

    Article  CAS  PubMed  Google Scholar 

  85. Schoenenberger JA, Aragones AM, Cano SM, et al. The advantages of therapeutic drug monitoring in patients receiving antiretroviral treatment and experiencing medication-related problems. Ther Drug Monit. 2013;35:71–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Gregory Lucas was supported by the National Institute on Drug Abuse (K24 DA035684 and R01 DA026770). Michelle M. Estrella was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (K23 DK081317). Gregory M. Lucas, and Michelle M. Estrella were also supported by the Johns Hopkins University Center for AIDS Research (P30 AI094189).

Compliance with Ethics Guidelines

Conflict of Interest

Matthew Foy, C. John Sperati, Gregory M. Lucas, and Michelle M. Estrella declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle M. Estrella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foy, M., Sperati, C.J., Lucas, G.M. et al. Drug Interactions and Antiretroviral Drug Monitoring. Curr HIV/AIDS Rep 11, 212–222 (2014). https://doi.org/10.1007/s11904-014-0212-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-014-0212-1

Keywords

Navigation