Skip to main content

Drug Interactions in HIV: Nucleoside, Nucleotide, and Nonnucleoside Reverse Transcriptase Inhibitors and Entry Inhibitors

  • Chapter
  • First Online:
Drug Interactions in Infectious Diseases: Antimicrobial Drug Interactions

Part of the book series: Infectious Disease ((ID))

Abstract

Recommended antiretroviral regimens for the treatment of HIV infection are composed of a combination of at least three antiretroviral medications. Most commonly, two nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) are combined with a medication from another antiretroviral drug class. This chapter reviews the pharmacology and drug interactions related to NRTIs, nonnucleoside reverse transcriptase inhibitors (NNRTIs), and entry inhibitors, including fusion inhibitors and CCR5 antagonists. NRTIs and enfuvirtide, a fusion inhibitor, have the fewest drug-drug interactions, as most are not hepatically eliminated. NNRTIs are frequent perpetrators of drug-drug interactions due to cytochrome P450 enzyme modulation. Both NNRTIs and the CCR5 antagonist, maraviroc, may also be victims of drug-drug interactions related to cytochrome P450 metabolism. This chapter emphasizes the clinical significance and management of common drug interactions associated with these antiretroviral drug classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ART:

Antiretroviral therapy

AUC:

Area under the concentration-time curve

BCRP:

Breast cancer resistance protein

BMD:

Bone mineral density

CCB:

Calcium channel blockers

CCR5:

C-C motif co-receptor 5

CES1:

Hepatic carboxylesterase

Cmax:

Maximum concentration

COC:

Combined oral contraceptives

CrCl:

Creatinine clearance

CSF:

Cerebrospinal fluid

CYP:

Cytochrome P450

FDC:

Fixed dose combination

HMG-CoA:

3-Hydroxy-3-methylglutaryl-coenzyme A

INR:

International normalized ratio

MAC:

Mycobacterium avium complex

MRP4:

Multidrug resistance protein 4

NNRTI:

Nonnucleoside reverse transcriptase inhibitors

NRTI:

Nucleoside/nucleotide reverse transcriptase inhibitor

OAT:

Organic anion transporter

OATP:

Organic anion-transporting polypeptides

OCT:

Organic cation transporters

PBMCs:

Peripheral blood mononuclear cells

PDE-5:

Phosphodiesterase type-5

P-gp:

P-glycoprotein

PrEP:

Pre-exposure prophylaxis

SNP:

Single-nucleotide polymorphisms

TAF:

Tenofovir alafenamide fumarate

TDF:

Tenofovir disoproxil fumarate

TFV:

Tenofovir

UGT:

Uridine-5′-diphosphate glucuronosyltransferase

References

  1. UNAIDS Global AIDS Update 2016. 31 May 2016. Available at: http://www.unaids.org/en/resources/documents/2016/Global-AIDS-update-2016. Accessed 14 Dec 2016

  2. Panel on Antiretroviral Guidelines for Adults and Adolescents Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. Available at: http://aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed 1 Dec 2016

  3. World Health Organization (2015) Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis for HIV. World Health Organization, Geneva

    Google Scholar 

  4. Centers for Disease Control and Prevention, U.S. Public Health Service (2014) Pre-exposure prophylaxis for the prevention of HIV infection in the United States—2014: a clinical practice guideline. Available at https://www.cdc.gov/hiv/pdf/prepguidelines2014.pdf. Accessed 14 Dec 2016

  5. Evans-Jones JG, Cottle LE, Back DJ, Gibbons S, Beeching NJ, Carey PB et al (2010) Recognition of risk for clinically significant drug interactions among HIV-infected patients receiving antiretroviral therapy. Clin Infect Dis: Off Publ Infect Dis Soc Am 50(10):1419–1421. https://doi.org/10.1086/652149

    Article  Google Scholar 

  6. Barry M, Mulcahy F, Merry C, Gibbons S, Back D (1999) Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet 36(4):289–304. https://doi.org/10.2165/00003088-199936040-00004

    Article  CAS  PubMed  Google Scholar 

  7. Viread(R) (tenofovir disproxil fumarate) [package insert] (2016) Gilead Sciences, Inc., Foster City

    Google Scholar 

  8. Margolis DA, Brinson CC, Smith GH, de Vente J, Hagins DP, Eron JJ et al (2015) Cabotegravir plus rilpivirine, once a day, after induction with cabotegravir plus nucleoside reverse transcriptase inhibitors in antiretroviral-naive adults with HIV-1 infection (LATTE): a randomised, phase 2b, dose-ranging trial. Lancet Infect Dis 15(10):1145–1155. https://doi.org/10.1016/s1473-3099(15)00152-8

    Article  CAS  PubMed  Google Scholar 

  9. Margolis DA, Podzamczer D, Stellbrink HJ, Lutz T, Angel JB, Richmond G, Clotet B, Gutierrez F, Sloan L, Griffith SK, St Clair M, Dorey D, Ford S, Mrus J, Crauwels H, Smith KY, Williams PE, Spreen WR (2016) Cabotegravir + rilpivirine as long-acting maintenance therapy: LATTE-2 week 48 results. AIDS 2016, 18–22 July 2016, Durban. Oral late breaker abstract THAB0206LB

    Google Scholar 

  10. Moss DM, Liptrott NJ, Curley P, Siccardi M, Back DJ, Owen A (2013) Rilpivirine inhibits drug transporters ABCB1, SLC22A1, and SLC22A2 in vitro. Antimicrob Agents Chemother 57(11):5612–5618. https://doi.org/10.1128/AAC.01421-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. FUZEON® (enfuvirtide) [package insert] (2015) Hoffmann-La Roche Inc., South San Francisco

    Google Scholar 

  12. Ziagen(R) (abacavir) [package insert] (2013) GlaxoSmithKline, Research Triangle Park

    Google Scholar 

  13. Zerit(R) (stavudine) [package insert] (2012) Bristol-Myers Squibb Company, Princeton

    Google Scholar 

  14. Retrovir(R) (zidovudine) [package insert] (2008) GlaxoSmithKline, Research Triangle Park

    Google Scholar 

  15. Epivir(R) (lamivudine) [package insert] (2011) GlaxoSmithKline, Research Triangle Park

    Google Scholar 

  16. Emtriva(R) (emtricitabine) [package insert] (2012) Gilead Sciences, Inc.,Foster City

    Google Scholar 

  17. Videx(R) EC (didanosine EC) [package insert] (2015) Bristol-Myers Squibb Company, Princeton

    Google Scholar 

  18. Videx(R) (didanosine) [package insert] (1999) Bristol-Myers Squibb Company, Princeton

    Google Scholar 

  19. Stevens RC, Rodman JH, Yong FH, Carey V, Knupp CA, Frenkel LM (2000) Effect of food and pharmacokinetic variability on didanosine systemic exposure in HIV-infected children. Pediatric AIDS Clinical Trials Group Protocol 144 Study Team. AIDS Res Hum Retrovir 16(5):415–421. https://doi.org/10.1089/088922200309070

    Article  CAS  PubMed  Google Scholar 

  20. Panel on Antiretroviral Therapy and Medical Management of HIV-Infected Children Guidelines for the use of antiretroviral agents in pediatric HIV infection. Department of Health and Human Services. Available at: http://aidsinfo.nih.gov/guidelines/html/2/pediatric-treatment-guidelines/0/. Accessed 16 Dec 2016

  21. Ray AS, Fordyce MW, Hitchcock MJ (2016) Tenofovir alafenamide: a novel prodrug of tenofovir for the treatment of human immunodeficiency virus. Antivir Res 125:63–70. https://doi.org/10.1016/j.antiviral.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  22. Kearney BP, Flaherty JF, Shah J (2004) Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. Clin Pharmacokinet 43(9):595–612. https://doi.org/10.2165/00003088-200443090-00003

    Article  CAS  PubMed  Google Scholar 

  23. Gibson AK, Shah BM, Nambiar PH, Schafer JJ (2016) Tenofovir Alafenamide: a review of its use in the treatment of HIV-1 infection. Ann Pharmacother. https://doi.org/10.1177/1060028016660812

  24. Bam RA, Yant SR, Cihlar T (2014) Tenofovir alafenamide is not a substrate for renal organic anion transporters (OATs) and does not exhibit OAT-dependent cytotoxicity. Antivir Ther 19(7):687–692. https://doi.org/10.3851/IMP2770

    Article  CAS  PubMed  Google Scholar 

  25. Descovy(R) (emtricitabine/tenofovir alafenamide) [package insert] (2016) Gilead Sciences, Inc., Foster City

    Google Scholar 

  26. Markowitz M, Zolopa A, Squires K, Ruane P, Coakley D, Kearney B et al (2014) Phase I/II study of the pharmacokinetics, safety and antiretroviral activity of tenofovir alafenamide, a new prodrug of the HIV reverse transcriptase inhibitor tenofovir, in HIV-infected adults. J Antimicrob Chemother 69(5):1362–1369. https://doi.org/10.1093/jac/dkt532

    Article  CAS  PubMed  Google Scholar 

  27. Emtriva(R) (emtricitabine) Summary of product characteristics. Gilead Sciences International Ltd., September 2008. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000533/WC500055586.pdf. Accessed 12 Oct 2016

  28. Calcagno A, Bonora S, Simiele M, Rostagno R, Tettoni MC, Bonasso M et al (2011) Tenofovir and emtricitabine cerebrospinal fluid-to-plasma ratios correlate to the extent of blood-brainbarrier damage. AIDS 25(11):1437–1439. https://doi.org/10.1097/QAD.0b013e3283489cb1

    Article  PubMed  Google Scholar 

  29. Yuen GJ, Weller S, Pakes GE (2008) A review of the pharmacokinetics of abacavir. Clin Pharmacokinet 47(6):351–371. https://doi.org/10.2165/00003088-200847060-00001

    Article  CAS  PubMed  Google Scholar 

  30. Michaud V, Bar-Magen T, Turgeon J, Flockhart D, Desta Z, Wainberg MA (2012) The dual role of pharmacogenetics in HIV treatment: mutations and polymorphisms regulating antiretroviral drug resistance and disposition. Pharmacol Rev 64(3):803–833. https://doi.org/10.1124/pr.111.005553

    Article  CAS  PubMed  Google Scholar 

  31. Ray AS, Olson L, Fridland A (2004) Role of purine nucleoside phosphorylase in interactions between 2′,3′-dideoxyinosine and allopurinol, ganciclovir, or tenofovir. Antimicrob Agents Chemother 48(4):1089–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moss DM, Neary M, Owen A (2014) The role of drug transporters in the kidney: lessons from tenofovir. Front Pharmacol 5(248). https://doi.org/10.3389/fphar.2014.00248

  33. Baheti G, Kiser JJ, Havens PL, Fletcher CV (2011) Plasma and intracellular population pharmacokinetic analysis of tenofovir in HIV-1-infected patients. Antimicrob Agents Chemother 55(11):5294–5299. https://doi.org/10.1128/aac.05317-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ray AS, Cihlar T, Robinson KL, Tong L, Vela JE, Fuller MD et al (2006) Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother 50(10):3297–3304. https://doi.org/10.1128/AAC.00251-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9(3):215–236. https://doi.org/10.1038/nrd3028

    Article  CAS  PubMed  Google Scholar 

  36. Moore KH, Yuen GJ, Raasch RH, Eron JJ, Martin D, Mydlow PK et al (1996) Pharmacokinetics of lamivudine administered alone and with trimethoprim-sulfamethoxazole. Clin Pharmacol Ther 59(5):550–558. https://doi.org/10.1016/s0009-9236(96)90183-6

    Article  CAS  PubMed  Google Scholar 

  37. Bactrim(R) (trimethoprim-sulfamethoxazole) [package insert] (2013) Mutual Pharmaceutical Company, Inc., Philadelphia

    Google Scholar 

  38. Odefsey(R) (rilpivirine/emtricitabine/tenofovir alafenamide) Assessment Report. Committee for Medicinal Products for Human Use (CHMP): European Medicines Agency., April 2016

    Google Scholar 

  39. Viread(R) (tenofovir) Summary of product characteristics. Gilead Sciences Ltd., December 2011. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000419/WC500051737.pdf. Accessed 1 Oct 2016

  40. Jung N, Lehmann C, Rubbert A, Knispel M, Hartmann P, van Lunzen J et al (2008) Relevance of the organic cation transporters 1 and 2 for antiretroviral drug therapy in human immunodeficiency virus infection. Drug Metab Dispos 36(8):1616–1623. https://doi.org/10.1124/dmd.108.020826

    Article  CAS  PubMed  Google Scholar 

  41. Gutierrez F, Fulladosa X, Barril G, Domingo P (2014) Renal tubular transporter-mediated interactions of HIV drugs: implications for patient management. AIDS Rev 16(4):199–212

    PubMed  Google Scholar 

  42. Shitara Y (2011) Clinical importance of OATP1B1 and OATP1B3 in drug-drug interactions. Drug Metab Pharmacokinet 26(3):220–227. https://doi.org/10.2133/dmpk.DMPK-10-RV-094

    Article  CAS  PubMed  Google Scholar 

  43. McDowell JA, Chittick GE, Stevens CP, Edwards KD, Stein DS (2000) Pharmacokinetic interaction of abacavir (1592U89) and ethanol in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother 44(6):1686–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gourevitch MN, Friedland GH (2000) Interactions between methadone and medications used to treat HIV infection: a review. Mt Sinai J Med NY 67(5–6):429–436

    CAS  Google Scholar 

  45. Aptivus(R) (tipranavir) [package insert] (2016) Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield

    Google Scholar 

  46. Reyataz(R) (atazanavir) [package insert] (2016) Bristol-Myers Squibb Company, Princeton

    Google Scholar 

  47. Evotaz(TM) (atazanavir/cobicistat) [package insert} (2016) Bristol-Myers Squibb Company, Princeton

    Google Scholar 

  48. Vistide(R) (cidofovir) [package insert] (2010) Gilead Sciences, Inc., Foster City

    Google Scholar 

  49. Luber A, L J, Rooney J, Jaffe H, Flaherty J Drug-drug interaction study with intravenous cidofovir (CDV) and either trimethoprim-sulfamethoxazole (TMP/SMX), didanosine (DDI) or fluconazole (FLU) in HIV-infected individuals. 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy; September 27–30; Chicago, Illinois 2002

    Google Scholar 

  50. Prezista(R) (darunavir) [package insert] (2016) Janssen Therapeutics, Titusville

    Google Scholar 

  51. Prezcobix(R) (darunavir/cobicistat) [package insert] (2016) Janssen Therapeutics, Division of Janssen Products, LP, Titusville

    Google Scholar 

  52. Cimoch PJ, Lavelle J, Pollard R, Griffy KG, Wong R, Tarnowski TL et al (1998) Pharmacokinetics of oral ganciclovir alone and in combination with zidovudine, didanosine, and probenecid in HIV-infected subjects. J Acquir Immune Defic Syndr Hum Retrovirol: Off Publ Int Retrovirol Assoc 17(3):227–234

    Article  CAS  Google Scholar 

  53. Edurant® (rilpivirine) [package insert] (2014) Janssen Therapeutics, Titusville

    Google Scholar 

  54. Rainey PM, Friedland G, McCance-Katz EF, Andrews L, Mitchell SM, Charles C et al (2000) Interaction of methadone with didanosine and stavudine. J Acquir Immune Defic Syndr 24(3):241–248

    Article  CAS  PubMed  Google Scholar 

  55. Descovy(R) (emtricitabine/TAF) Summary of Product Characteristics. Gilead Sciences International Ltd., April 2016. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/004094/WC500207650.pdf. Accessed 1 Dec 2016

  56. Ramanathan S, Wei X, Custodio J, Wang H, Dave A, Cheng A, Kearney B Pharmacokinetics of a novel EVG/COBI/FTC/GS-7340 single tablet regimen. Paper presented at: 13th international workshop on clinical pharmacology of HIV therapy, Barcelona 2012

    Google Scholar 

  57. STRIBILD® (elvitegravir, cobicistat, emtricitabine, tenofovir disoproxil fumarate) [package insert] (2016) Gilead Sciences, Inc., Foster City

    Google Scholar 

  58. Kaletra(R) (lopinavir/ritonavir) [package insert] (2016) AbbVie Inc., North Chicago

    Google Scholar 

  59. Wenning LA, Friedman EJ, Kost JT, Breidinger SA, Stek JE, Lasseter KC et al (2008) Lack of a significant drug interaction between raltegravir and tenofovir. Antimicrob Agents Chemother 52(9):3253–3258. https://doi.org/10.1128/aac.00005-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Droste JA, Verweij-van Wissen CP, Kearney BP, Buffels R, Vanhorssen PJ, Hekster YA et al (2005) Pharmacokinetic study of tenofovir disoproxil fumarate combined with rifampin in healthy volunteers. Antimicrob Agents Chemother 49(2):680–684. https://doi.org/10.1128/aac.49.2.680-684.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lertora JJ, Rege AB, Greenspan DL, Akula S, George WJ, Hyslop NE Jr et al (1994) Pharmacokinetic interaction between zidovudine and valproic acid in patients infected with human immunodeficiency virus. Clin Pharmacol Ther 56(3):272–278

    Article  CAS  PubMed  Google Scholar 

  62. University of Liverpool. HIV drug interactions. Available at: http://www.hiv-druginteractions.org/. Accessed 13 Oct 2016

  63. Sax PE, Zolopa A, Brar I, Elion R, Ortiz R, Post F et al (2014) Tenofovir alafenamide vs. tenofovir disoproxil fumarate in single tablet regimens for initial HIV-1 therapy: a randomized phase 2 study. J Acquir Immune Defic Syndr 67(1):52–58. https://doi.org/10.1097/qai.0000000000000225

    Article  CAS  PubMed  Google Scholar 

  64. Sax PE, Wohl D, Yin MT, Post F, DeJesus E, Saag M et al (2015) Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: two randomised, double-blind, phase 3, non-inferiority trials. Lancet (London, England) 385(9987):2606–2615. https://doi.org/10.1016/s0140-6736(15)60616-x

    Article  CAS  Google Scholar 

  65. Barrios A, Rendon A, Negredo E, Barreiro P, Garcia-Benayas T, Labarga P et al (2005) Paradoxical CD4+ T-cell decline in HIV-infected patients with complete virus suppression taking tenofovir and didanosine. AIDS 19(6):569–575

    Article  CAS  PubMed  Google Scholar 

  66. Yombi JC, Pozniak A, Boffito M, Jones R, Khoo S, Levy J et al (2014) Antiretrovirals and the kidney in current clinical practice: renal pharmacokinetics, alterations of renal function and renal toxicity. AIDS 28(5):621–632. https://doi.org/10.1097/qad.0000000000000103

    Article  CAS  PubMed  Google Scholar 

  67. Mills A, Crofoot G Jr, McDonald C, Shalit P, Flamm JA, Gathe J Jr et al (2015) Tenofovir alafenamide versus tenofovir disoproxil fumarate in the first protease inhibitor-based single-tablet regimen for initial HIV-1 therapy: a randomized phase 2 study. J Acquir Immune Defic Syndr 69(4):439–445. https://doi.org/10.1097/qai.0000000000000618

    Article  CAS  PubMed  Google Scholar 

  68. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P et al (2011) Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis 203(12):1791–1801. https://doi.org/10.1093/infdis/jir188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Famvir(R) (famciclovir) [package insert] (2016) Novartis Pharmaceuticals Corporation, East Hanover

    Google Scholar 

  70. Aweeka FT, Gambertoglio JG, van der Horst C, Raasch R, Jacobson MA (1992) Pharmacokinetics of concomitantly administered foscarnet and zidovudine for treatment of human immunodeficiency virus infection (AIDS Clinical Trials Group protocol 053). Antimicrob Agents Chemother 36(8):1773–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Harvoni (R) (ledipasvir and sofosbuvir) [package insert] (2017) Gilead Sciences, Inc., Foster City

    Google Scholar 

  72. Epclusa(R) (sofosbuvir and velpatasvir) [package insert] (2017) Gilead Sciences, Inc., Foster City

    Google Scholar 

  73. Rahimi R, Abdollahi M (2012) An update on the ability of St. John’s wort to affect the metabolism of other drugs. Expert Opin Drug Metab Toxicol 8(6):691–708. https://doi.org/10.1517/17425255.2012.680886

    Article  PubMed  Google Scholar 

  74. McCance-Katz EF, Rainey PM, Friedland G, Kosten TR, Jatlow P (2001) Effect of opioid dependence pharmacotherapies on zidovudine disposition. Am J Addict 10(4):296–307

    Article  CAS  PubMed  Google Scholar 

  75. McCance-Katz EF, Rainey PM, Jatlow P, Friedland G (1998) Methadone effects on zidovudine disposition (AIDS Clinical Trials Group 262). JAIDS J Acquir Immune Defic Syndr 18(5):435–443

    Article  CAS  Google Scholar 

  76. Baker J, Rainey PM, Moody DE, Morse GD, Ma Q, McCance-Katz EF (2010) Interactions between buprenorphine and antiretrovirals: nucleos(t)ide reverse transcriptase inhibitors (NRTI) didanosine, lamivudine, and tenofovir. Am J Addict 19(1):17–29. https://doi.org/10.1111/j.1521-0391.2009.00004.x

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lee BL, Tauber MG, Sadler B, Goldstein D, Chambers HF (1996) Atovaquone inhibits the glucuronidation and increases the plasma concentrations of zidovudine. Clin Pharmacol Ther 59(1):14–21. https://doi.org/10.1016/s0009-9236(96)90019-3

    Article  CAS  PubMed  Google Scholar 

  78. Khoo SH GS, Seden K, Black D Systematic review: Drug-drug Interactions between Antiretrovirals and medications used to treat TB, Malaria, Hepatitis B&C and opioid dependence. 2009. Available at: http://www.who.int/hiv/topics/treatment/drug_drug_interactions_review.pdf. Accessed 1 Dec 2016

  79. Hall AM, Hendry BM, Nitsch D, Connolly JO (2011) Tenofovir-associated kidney toxicity in HIV-infected patients: a review of the evidence. Am J kidney Dis: Off J Natl Kidney Found 57(5):773–780. https://doi.org/10.1053/j.ajkd.2011.01.022

    Article  CAS  Google Scholar 

  80. Viramune(R) (nevirapine) [package insert] (2014) Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield

    Google Scholar 

  81. Sustiva® (efavirenz) [package insert] (2014) Princeton, Bristol-Myers Squibb Company

    Google Scholar 

  82. Usach I, Melis V, Peris JE (2013) Non-nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability. J Int AIDS Soc 16:1–14. https://doi.org/10.7448/IAS.16.1.18567

    Article  PubMed  Google Scholar 

  83. Dickinson L, Khoo S, Back D (2010) Pharmacokinetic evaluation of etravirine. Expert Opin Drug Metab Toxicol 6(12):1575–1585. https://doi.org/10.1517/17425255.2010.535811

    Article  CAS  PubMed  Google Scholar 

  84. Intelence(R) (etravirine) [package insert] (2013) Janssen Therapeutics, Titusville

    Google Scholar 

  85. Aouri M, Barcelo C, Ternon B, Cavassini M, Anagnostopoulos A, Yerly S et al (2016) Vivo profiling and distribution of known and novel phase I and phase II metabolites of efavirenz in plasma, urine, and cerebrospinal fluid. Drug Metab Dispos 44(1):151–161. https://doi.org/10.1124/dmd.115.065839.

    Article  CAS  PubMed  Google Scholar 

  86. Tiraboschi JM, Niubo J, Vila A, Perez-Pujol S, Podzamczer D (2012) Etravirine concentrations in CSF in HIV-infected patients. J Antimicrob Chemother 67(6):1446–1448. https://doi.org/10.1093/jac/dks048

    Article  CAS  PubMed  Google Scholar 

  87. Mora-Peris B, Watson V, Vera JH, Weston R, Waldman AD, Kaye S et al (2014) Rilpivirine exposure in plasma and sanctuary site compartments after switching from nevirapine-containing combined antiretroviral therapy. J Antimicrob Chemother 69(6):1642–1647. https://doi.org/10.1093/jac/dku018

    Article  CAS  PubMed  Google Scholar 

  88. Cho DY, Ogburn ET, Jones D, Desta Z (2011) Contribution of N-glucuronidation to efavirenz elimination in vivo in the basal and rifampin-induced metabolism of efavirenz. Antimicrob Agents Chemother 55(4):1504–1509. https://doi.org/10.1128/AAC.00883-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee LS, Pham P, Flexner C (2012) Unexpected drug-drug interactions in human immunodeficiency virus (HIV) therapy: induction of UGT1A1 and bile efflux transporters by Efavirenz. Ann Acad Med Singap 41(12):559–562

    PubMed  Google Scholar 

  90. McDonagh EM, Lau JL, Alvarellos ML, Altman RB, Klein TE (2015) PharmGKB summary: Efavirenz pathway, pharmacokinetics. Pharmacogenet Genomics 25(7):363–376. https://doi.org/10.1097/FPC.0000000000000145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Krishna G, Moton A, Ma L, Martinho M, Seiberling M, McLeod J (2009) Effects of oral posaconazole on the pharmacokinetics of atazanavir alone and with ritonavir or with efavirenz in healthy adult volunteers. J Acquir Immune Defic Syndr 51(4):437–444

    Article  CAS  PubMed  Google Scholar 

  92. Yanakakis LJ, Bumpus NN (2012) Biotransformation of the antiretroviral drug etravirine: metabolite identification, reaction phenotyping, and characterization of autoinduction of cytochrome P450-dependent metabolism. Drug Metab Dispos 40(4):803–814. https://doi.org/10.1124/dmd.111.044404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Riska P, Lamson M, MacGregor T, Sabo J, Hattox S, Pav J et al (1999) Disposition and biotransformation of the antiretroviral drug nevirapine in humans. Drug Metab Dispos 27(8):895–901

    CAS  PubMed  Google Scholar 

  94. Back DGS, Khoo S (2003) Pharmacokinetic drug interactions with nevirapine. J Acquir Immune Defic Syndr 34:8–14

    Article  Google Scholar 

  95. von Moltke LL, Greenblatt DJ, Granda BW, Giancarlo GM, Duan SX, Daily JP et al (2001) Inhibition of human cytochrome P450 isoforms by nonnucleoside reverse transcriptase inhibitors. J Clin Pharmacol 41(1):85–91. https://doi.org/10.1177/00912700122009728

    Article  Google Scholar 

  96. Crauwels H, van Heeswijk RP, Stevens M, Buelens A, Vanveggel S, Boven K et al (2013) Clinical perspective on drug-drug interactions with the non-nucleoside reverse transcriptase inhibitor rilpivirine. AIDS Rev 15(2):87–101

    PubMed  Google Scholar 

  97. Lade JM, Avery LB, Bumpus NN (2013) Human biotransformation of the nonnucleoside reverse transcriptase inhibitor rilpivirine and a cross-species metabolism comparison. Antimicrob Agents Chemother 57(10):5067–5079. https://doi.org/10.1128/AAC.01401-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Heil SG, van der Ende ME, Schenk PW, van der Heiden I, Lindemans J, Burger D et al (2012) Associations between ABCB1, CYP2A6, CYP2B6, CYP2D6, and CYP3A5 alleles in relation to efavirenz and nevirapine pharmacokinetics in HIV-infected individuals. Ther Drug Monit 34(2):153–159. https://doi.org/10.1097/FTD.0b013e31824868f3

    Article  CAS  PubMed  Google Scholar 

  99. Störmer E, von Moltke LL, Perloff MD, Greenblatt DJ (2002) Differential modulation of P-glycoprotein expression and activity by non-nucleoside HIV-1 reverse transcriptase inhibitors in cell culture. Pharm Res 19(7):1038–1045. https://doi.org/10.1023/a:1016430825740

    Article  PubMed  Google Scholar 

  100. Kakuda TN, Van Solingen-Ristea RM, Onkelinx J, Stevens T, Aharchi F, De Smedt G et al (2014) The effect of single- and multiple-dose etravirine on a drug cocktail of representative cytochrome P450 probes and digoxin in healthy subjects. J Clin Pharmacol 54(4):422–431. https://doi.org/10.1002/jcph.214

    Article  PubMed  CAS  Google Scholar 

  101. Schöller-Gyüre M, Kakuda TN, Raoof A, De Smedt G, Hoetelmans RM (2009) Clinical pharmacokinetics and pharmacodynamics of etravirine. Clin Pharmacokinet 48. https://doi.org/10.2165/10895940-000000000-00000

  102. Zembruski NCL, Haefeli WE, Weiss J (2011) Interaction potential of etravirine with drug transporters assessed in vitro. Antimicrob Agents Chemother 55(3):1282–1284. https://doi.org/10.1128/AAC.01527-10

    Article  CAS  PubMed  Google Scholar 

  103. Weiss J, Haefeli WE (2013) Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrob Agents 41(5):484–487. https://doi.org/10.1016/j.ijantimicag.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  104. Lewis JM, Stott KE, Monnery D, Seden K, Beeching NJ, Chaponda M et al (2016) Managing potential drug-drug interactions between gastric acid-reducing agents and antiretroviral therapy: experience from a large HIV-positive cohort. Int J STD AIDS 27(2):105–109. https://doi.org/10.1177/0956462415574632

    Article  CAS  PubMed  Google Scholar 

  105. Gutiérrez F, Navarro A, Padilla S, Antón R, Masiá M, Borrás J et al (2005) Prediction of neuropsychiatric adverse events associated with long-term Efavirenz therapy, using plasma drug level monitoring. Clin Infect Dis 41(11):1648–1653. https://doi.org/10.1086/497835

    Article  PubMed  Google Scholar 

  106. Carey D, Puls R, Amin J, Losso M, Phanupak P, Foulkes S et al (2015) Efficacy and safety of efavirenz 400 mg daily versus 600 mg daily: 96-week data from the randomised, double-blind, placebo-controlled, non-inferiority ENCORE1 study. Lancet Infect Dis 15(7):793–802. https://doi.org/10.1016/s1473-3099(15)70060-5

    Article  PubMed  CAS  Google Scholar 

  107. Egan G, Hughes CA, Ackman ML (2014) Drug interactions between antiplatelet or novel oral anticoagulant medications and antiretroviral medications. Ann Pharmacother 48(6):734–740. https://doi.org/10.1177/1060028014523115

    Article  CAS  PubMed  Google Scholar 

  108. Brilinta(R) (ticagrelor) [package insert] (2016) AstraZeneca Pharmaceuticals LP, Wilmington

    Google Scholar 

  109. Ji P, Damle B, Xie J, Unger SE, Grasela DM, Kaul S (2008) Pharmacokinetic interaction between efavirenz and carbamazepine after multiple-dose administration in healthy subjects. J Clin Pharmacol 48(8):948–956. https://doi.org/10.1177/0091270008319792

    Article  CAS  PubMed  Google Scholar 

  110. Robertson SM, Penzak SR, Lane J, Pau AK, Mican JMA (2005) Potentially significant interaction between efavirenz and phenytoin: a case report and review of the literature. Clin Infect Dis: Off Publ Infect Dis Soc Am 41(2):e15–e18. https://doi.org/10.1086/431208

    Article  Google Scholar 

  111. Noxafil(R) (posaconazole) [package insert] (2016) Merck & Co., Inc., Whitehouse Station

    Google Scholar 

  112. Byakika-Kibwika P, Lamorde M, Mayito J, Nabukeera L, Namakula R, Mayanja-Kizza H et al (2012) Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J Antimicrob Chemother 67(9):2213–2221. https://doi.org/10.1093/jac/dks207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hoglund RM, Byakika-Kibwika P, Lamorde M, Merry C, Ashton M, Hanpithakpong W et al (2015) Artemether-lumefantrine co-administration with antiretrovirals: population pharmacokinetics and dosing implications. Br J Clin Pharmacol 79(4):636–649. https://doi.org/10.1111/bcp.12529

    Article  CAS  PubMed  Google Scholar 

  114. van Luin M, Van der Ende ME, Richter C, Visser M, Faraj D, Van der Ven A et al (2010) Lower atovaquone/proguanil concentrations in patients taking efavirenz, lopinavir/ritonavir or atazanavir/ritonavir. AIDS 24(8):1223–1226. https://doi.org/10.1097/QAD.0b013e3283389129

    Article  PubMed  CAS  Google Scholar 

  115. Dooley KE, Flexner C, Adriana AS (2008) Drug interactions involving combination antiretroviral therapy and other anti-infective agents: repercussions for resource-limited countries. J Infect Dis 198(7):948–961. https://doi.org/10.1086/591459

    Article  CAS  PubMed  Google Scholar 

  116. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents. Department of Health and Human Services. Available at: https://aidsinfo.nih.gov/contentfiles/lvguidelines/Adult_OI.pdf. Accessed 14 Jan 17

  117. Sustiva(R) (efavirenz). Summary of product characteristics. Bristol-Myers Squibb Pharma EEIG., 2014. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000249/WC500058311.pdf. Accessed 1 Oct 2016

  118. la Porte CJ, Sabo JP, Beique L, Cameron DW (2009) Lack of effect of efavirenz on the pharmacokinetics of tipranavir-ritonavir in healthy volunteers. Antimicrob Agents Chemother 53(11):4840–4844. https://doi.org/10.1128/aac.00462-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Bailey L, Ward M, Musa MN (1994) Clinical pharmacokinetics of benzodiazipines. J Clin Pharmacol 34(8):804–811. https://doi.org/10.1002/j.1552-4604.1994.tb02043.x

    Article  CAS  PubMed  Google Scholar 

  120. Scarsi KK, Darin KM, Chappell CA, Nitz SM, Lamorde M (2016) Drug-drug interactions, effectiveness, and safety of hormonal contraceptives in women living with HIV. Drug Saf 39(11):1053–1072. https://doi.org/10.1007/s40264-016-0452-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sevinsky H, Eley T, Persson A, Garner D, Yones C, Nettles R et al (2011) The effect of efavirenz on the pharmacokinetics of an oral contraceptive containing ethinyl estradiol and norgestimate in healthy HIV-negative women. Antivir Ther 16(2):149–156. https://doi.org/10.3851/imp1725

    Article  CAS  PubMed  Google Scholar 

  122. Scarsi KK, Darin KM, Nakalema S, Back DJ, Byakika-Kibwika P, Else LJ et al (2016) Unintended pregnancies observed with combined use of the levonorgestrel contraceptive implant and efavirenz-based antiretroviral therapy: a three-arm pharmacokinetic evaluation over 48 weeks. Clin Infect Dis: Off Publ Infect Dis Soc Am 62(6):675–682. https://doi.org/10.1093/cid/civ1001

    Article  CAS  Google Scholar 

  123. Malvestutto CD, Ma Q, Morse GD, Underberg JA, Aberg JA (2014) Lack of pharmacokinetic interactions between pitavastatin and efavirenz or darunavir/ritonavir. J Acquir Immune Defic Syndr 67(4):390–396. https://doi.org/10.1097/qai.0000000000000333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. McCance-Katz EF, Moody DE, Morse GD, Friedland G, Pade P, Baker J et al (2006) Interactions between buprenorphine and antiretrovirals. I. The nonnucleoside reverse-transcriptase inhibitors efavirenz and delavirdine. Clin Infect Dis: Off Publ Infect Dis Soc Am 43(Suppl 4):S224–S234. https://doi.org/10.1086/508187

    Article  CAS  Google Scholar 

  125. Clarke SM, Mulcahy FM, Tjia J, Reynolds HE, Gibbons SE, Barry MG et al (2001) The pharmacokinetics of methadone in HIV-positive patients receiving the non-nucleoside reverse transcriptase inhibitor efavirenz. Br J Clin Pharmacol 51(3):213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kakuda TN, Schöller-Gyüre M, Hoetelmans RMW (2011) Pharmacokinetic interactions between etravirine and non-antiretroviral drugs. Clin Pharmacokinet 50(1):25–39. https://doi.org/10.2165/11534740-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  127. Perucca E (2006) Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol 61(3):246–255. https://doi.org/10.1111/j.1365-2125.2005.02529.x

    Article  CAS  PubMed  Google Scholar 

  128. Kakuda TN, DeMasi R, van Delft Y, Mohammed P (2013) Pharmacokinetic interaction between etravirine or darunavir/ritonavir and artemether/lumefantrine in healthy volunteers: a two-panel, two-way, two-period, randomized trial. HIV Med 14(7):421–429. https://doi.org/10.1111/hiv.12019

    Article  CAS  PubMed  Google Scholar 

  129. Tommasi C, Bellagamba R, Tempestilli M, D’Avolio A, Gallo AL, Ivanovic J et al (2011) Marked increase in etravirine and saquinavir plasma concentrations during atovaquone/proguanil prophylaxis. Malar J 10(1):141. https://doi.org/10.1186/1475-2875-10-141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Intelence(R) (etravirine) Summary of Product Characteristics. Boehringer Ingelheim International GmbH., October 2010. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000900/WC500034180.pdf. Accessed 29 Mar 2017

  131. Naccarato M, Yoong D, Kovacs C, Gough KA (2012) Case of a potential drug interaction between clobazam and etravirine-based antiretroviral therapy. Antivir Ther 17(3):589–592. https://doi.org/10.3851/imp1953

    Article  CAS  PubMed  Google Scholar 

  132. Scholler-Gyure M, Kakuda TN, Woodfall B, Aharchi F, Peeters M, Vandermeulen K et al (2009) Effect of steady-state etravirine on the pharmacokinetics and pharmacodynamics of ethinylestradiol and norethindrone. Contraception 80(1):44–52. https://doi.org/10.1016/j.contraception.2009.01.009

    Article  PubMed  CAS  Google Scholar 

  133. Dionisio D, Mininni S, Bartolozzi D, Esperti F, Vivarelli A, Leoncini F (2001) Need for increased dose of warfarin in HIV patients taking nevirapine. AIDS 15(2):277–278

    Article  CAS  PubMed  Google Scholar 

  134. de Maat MMR, Huitema ADR, Mulder JW, Meenhorst PL, van Gorp ECM, Mairuhu ATA et al (2003) Drug interaction of fluvoxamine and fluoxetine with nevirapine in HIV-1-infected individuals. Clin Drug Investig 23(10):629–637. https://doi.org/10.2165/00044011-200323100-00002

    Article  PubMed  Google Scholar 

  135. Vfend(R) (voriconazole) [package insert] (2015) Pfizer inc., New York

    Google Scholar 

  136. Parikh S, Fehintola F, Huang L, Olson A, Adedeji WA, Darin KM et al (2015) Artemether-lumefantrine exposure in HIV-infected Nigerian subjects on nevirapine-containing antiretroviral therapy. Antimicrob Agents Chemother 59(12):7852–7856. https://doi.org/10.1128/aac.01153-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kredo T, Mauff K, Van der Walt JS, Wiesner L, Maartens G, Cohen K et al (2011) Interaction between artemether-lumefantrine and nevirapine-based antiretroviral therapy in HIV-1-infected patients. Antimicrob Agents Chemother 55(12):5616–5623. https://doi.org/10.1128/aac.05265-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Aptivus(R) (tipranavir) Summary of Product Characteristics. Boehringer Ingelheim International GmbH., October 2010. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000631/WC500025936.pdf. Accessed 1 Oct 2016

  139. Mildvan D, Yarrish R, Marshak A, Hutman HW, McDonough M, Lamson M et al (2002) Pharmacokinetic interaction between nevirapine and ethinyl estradiol/norethindrone when administered concurrently to HIV-infected women. J Acquir Immune Defic Syndr 29(5):471–477

    Article  CAS  PubMed  Google Scholar 

  140. Chappell CA, Lamorde M, Nakalema S, Chen BA, Mackline H, Riddler SA et al (2017) Efavirenz decreases etonogestrel exposure: a pharmacokinetic evaluation of implantable contraception with antiretroviral therapy. AIDS 31(14):1965-1972. http://doi:10.1097/qad.0000000000001591.

    Google Scholar 

  141. McCance-Katz EF, Moody DE, Morse GD, Ma Q, Rainey PM (2010) Lack of clinically significant drug interactions between nevirapine and buprenorphine. Am J Addict 19(1):30–37. https://doi.org/10.1111/j.1521-0391.2009.00006.x

    Article  PubMed  PubMed Central  Google Scholar 

  142. Sirturo(R) (bedaquiline) (2016) Summary of product characteristics. Janssen-Cilag International NV

    Google Scholar 

  143. Abdelhady AM, Shugg T, Thong N, Lu JB, Kreutz Y, Jaynes HA et al (2016) Efavirenz inhibits the Human Ether-A-Go-Go Related Current (hERG) and induces QT interval prolongation in CYP2B6*6*6 allele carriers. J Cardiovasc Electrophysiol 27(10):1206–1213. https://doi.org/10.1111/jce.13032

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sani MU, Okeahialam BN (2005) QTc interval prolongation in patients with HIV and AIDS. J Natl Med Assoc 97(12):1657–1661

    PubMed  PubMed Central  Google Scholar 

  145. Cohen CJ, Molina JM, Cahn P, Clotet B, Fourie J, Grinsztejn B et al (2012) Efficacy and safety of rilpivirine (TMC278) versus efavirenz at 48 weeks in treatment-naive HIV-1-infected patients: pooled results from the phase 3 double-blind randomized ECHO and THRIVE Trials. J Acquir Immune Defic Syndr 60(1):33–42. https://doi.org/10.1097/QAI.0b013e31824d006e

    Article  CAS  PubMed  Google Scholar 

  146. Cohen CJ, Molina JM, Cassetti I, Chetchotisakd P, Lazzarin A, Orkin C et al (2013) Week 96 efficacy and safety of rilpivirine in treatment-naive, HIV-1 patients in two Phase III randomized trials. AIDS 27(6):939–950. https://doi.org/10.1097/QAD.0b013e32835cee6e

    Article  CAS  PubMed  Google Scholar 

  147. Pozniak AL, Morales-Ramirez J, Katabira E, Steyn D, Lupo SH, Santoscoy M et al (2010) Efficacy and safety of TMC278 in antiretroviral-naive HIV-1 patients: week 96 results of a phase IIb randomized trial. AIDS 24(1):55–65. https://doi.org/10.1097/QAD.0b013e32833032ed

    Article  CAS  PubMed  Google Scholar 

  148. Esterly JS, Darin KM, Gerzenshtein L, Othman F, Postelnick MJ, Scarsi KK (2013) Clinical implications of antiretroviral drug interactions with warfarin: a case–control study. J Antimicrob Chemother 68(6):1360–1363. https://doi.org/10.1093/jac/dkt043

    Article  CAS  PubMed  Google Scholar 

  149. Liedtke MD, Rathbun RC (2010) Drug interactions with antiretrovirals and warfarin. Expert Opin Drug Saf 9(2):215–223. https://doi.org/10.1517/14740330903493458

    Article  CAS  PubMed  Google Scholar 

  150. Plavix(R) (clopidogrel) [package insert] (2016) Bristol-Myers Squibb/Sanofi Pharmaceuticals Partnership, Bridgewater

    Google Scholar 

  151. Htun WW, Steinhubl SR (2013) Ticagrelor: the first novel reversible P2Y(12) inhibitor. Expert Opin Pharmacother 14(2):237–245. https://doi.org/10.1517/14656566.2013.757303

    Article  CAS  PubMed  Google Scholar 

  152. Bates D, Dalton B, Gilmour J, Kapler J (2013) Venous thromboembolism due to suspected interaction between rivaroxaban and nevirapine. Can J Hosp Pharm 66(2):125–129

    PubMed  PubMed Central  Google Scholar 

  153. Birbeck GL, French JA, Perucca E, Simpson DM, Fraimow H, George JM et al (2012) Evidence-based guideline: antiepileptic drug selection for people with HIV/AIDS: report of the quality standards subcommittee of the American Academy of Neurology and the Ad Hoc Task Force of the Commission on Therapeutic Strategies of the International League Against Epilepsy. Neurology 78(2):139–145. https://doi.org/10.1212/WNL.0b013e31823efcf8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liedtke MD, Lockhart SM, Rathbun RC (2004) Anticonvulsant and antiretroviral interactions. Ann Pharmacother 38(3):482–489. https://doi.org/10.1345/aph.1D309

    Article  CAS  PubMed  Google Scholar 

  155. DiCenzo R, Peterson D, Cruttenden K, Morse G, Riggs G, Gelbard H et al (2004) Effects of valproic acid coadministration on plasma efavirenz and lopinavir concentrations in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother 48(11):4328–4331. https://doi.org/10.1128/aac.48.11.4328-4331.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Goicoechea M, Best B, Capparelli E, Haubrich R (2006) Concurrent use of efavirenz and oxcarbazepine may not affect efavirenz plasma concentrations. Clin Infect Dis: Off Publ Infect Dis Soc Am 43(1):116–117. https://doi.org/10.1086/504952

    Article  Google Scholar 

  157. Vimpat(R) (lacosamide) [package insert] (2015) UCB, Inc., Smyrna

    Google Scholar 

  158. Topamax(R) (topiramate) [package insert] (2014) Janssen Pharmaceuticals, Inc., Titusville

    Google Scholar 

  159. Kirmani BF, Mungall-Robinson D (2014) Role of anticonvulsants in the management of AIDS related seizures. Front Neurol 5:10. https://doi.org/10.3389/fneur.2014.00010

    PubMed  PubMed Central  Google Scholar 

  160. Spina E, Santoro V, D’Arrigo C (2008) Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: an update. Clin Ther 30(7):1206–1227

    Article  CAS  PubMed  Google Scholar 

  161. Robertson SM, Maldarelli F, Natarajan V, Formentini E, Alfaro RM, Penzak SR (2008) Efavirenz induces CYP2B6-mediated hydroxylation of bupropion in healthy subjects. J Acquir Immune Defic Syndr 49(5):513–519. https://doi.org/10.1097/QAI.0b013e318183a425

    Article  CAS  PubMed  Google Scholar 

  162. Brüggemann RJM, Alffenaar J-WC, Blijlevens NMA, Billaud EM, Kosterink JGW, Verweij PE et al (2009) Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin Infect Dis 48(10):1441–1458. https://doi.org/10.1086/598327

    Article  PubMed  CAS  Google Scholar 

  163. Cresemba (R) (isavuconazonium sulfate) [package insert] (2015) Astellas Pharma US, Inc., Northbrook

    Google Scholar 

  164. Sriwiriyajan S, Mahatthanatrakul W, Ridtitid W, Jaruratanasirikul S (2007) Effect of efavirenz on the pharmacokinetics of ketoconazole in HIV-infected patients. Eur J Clin Pharmacol 63(5):479–483. https://doi.org/10.1007/s00228-007-0282-8

    Article  CAS  PubMed  Google Scholar 

  165. Huang L, Parikh S, Rosenthal PJ, Lizak P, Marzan F, Dorsey G et al (2012) Concomitant efavirenz reduces pharmacokinetic exposure to the antimalarial drug artemether-lumefantrine in healthy volunteers. J Acquir Immune Defic Syndr 61(3):310–316. https://doi.org/10.1097/QAI.0b013e31826ebb5c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Maganda BA, Ngaimisi E, Kamuhabwa AA, Aklillu E, Minzi OM (2015) The influence of nevirapine and efavirenz-based anti-retroviral therapy on the pharmacokinetics of lumefantrine and anti-malarial dose recommendation in HIV-malaria co-treatment. Malar J 14:179. https://doi.org/10.1186/s12936-015-0695-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Parikh S, Kajubi R, Huang L, Ssebuliba J, Kiconco S, Gao Q et al (2016) Antiretroviral choice for HIV impacts antimalarial exposure and treatment outcomes in Ugandan children. Clin Infect Dis: Off Publ Infect Dis Soc Am 63(3):414–422. https://doi.org/10.1093/cid/ciw291

    Article  CAS  Google Scholar 

  168. Lariam(R) (mefloquine) [package insert] (2008) Roche Laboratories Inc., Nutley

    Google Scholar 

  169. Doryx(R) (doxycycline hyclate) [package insert] (2015) Mayne Pharma, Greenville

    Google Scholar 

  170. Khoo S, Back D, Winstanley P (2005) The potential for interactions between antimalarial and antiretroviral drugs. AIDS 19(10):995–1005

    Article  PubMed  Google Scholar 

  171. Peyriere H, Eiden C, Macia JC, Reynes J (2012) Antihypertensive drugs in patients treated with antiretrovirals. Ann Pharmacother 46(5):703–709. https://doi.org/10.1345/aph.1Q546

    Article  PubMed  CAS  Google Scholar 

  172. Cohn SE, Park JG, Watts DH, Stek A, Hitti J, Clax PA et al (2007) Depo-medroxyprogesterone in women on antiretroviral therapy: effective contraception and lack of clinically significant interactions. Clin Pharmacol Ther 81(2):222–227. https://doi.org/10.1038/sj.clpt.6100040

    Article  CAS  PubMed  Google Scholar 

  173. Nanda K, Amaral E, Hays M, Viscola MA, Mehta N, Bahamondes L (2008) Pharmacokinetic interactions between depot medroxyprogesterone acetate and combination antiretroviral therapy. Fertil Steril 90(4):965–971. https://doi.org/10.1016/j.fertnstert.2007.07.1348

    Article  CAS  PubMed  Google Scholar 

  174. Carten ML, Kiser JJ, Kwara A, Mawhinney S, Cu-Uvin S (2012) Pharmacokinetic interactions between the hormonal emergency contraception, levonorgestrel (Plan B), and Efavirenz. Infect Dis Obstet Gynecol 2012:137192. https://doi.org/10.1155/2012/137192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Landolt NK, Phanuphak N, Ubolyam S, Pinyakorn S, Kerr S, Ahluwalia J et al (2014) Significant decrease of ethinylestradiol with nevirapine, and of etonogestrel with efavirenz in HIV-positive women. J Acquir Immune Defic Syndr 66(2):e50–e52. https://doi.org/10.1097/QAI.0000000000000134

    PubMed  Google Scholar 

  176. Vieira CS, Bahamondes MV, de Souza RM, Brito MB, Rocha Prandini TR, Amaral E et al (2014) Effect of antiretroviral therapy including lopinavir/ritonavir or efavirenz on etonogestrel-releasing implant pharmacokinetics in HIV-positive women. J Acquir Immune Defic Syndr 66(4):378–385. https://doi.org/10.1097/QAI.0000000000000189

    Article  CAS  PubMed  Google Scholar 

  177. Patel RC, Onono M, Gandhi M, Blat C, Hagey J, Shade SB et al (2015) Pregnancy rates in HIV-positive women using contraceptives and efavirenz-based or nevirapine-based antiretroviral therapy in Kenya: a retrospective cohort study. Lancet HIV 2(11):e474–e482. https://doi.org/10.1016/S2352-3018(15)00184-8

    Article  PubMed  PubMed Central  Google Scholar 

  178. Stuart GS, Moses A, Corbett A, Phiri G, Kumwenda W, Mkandawire N et al (2011) Combined oral contraceptives and antiretroviral PK/PD in Malawian women: pharmacokinetics and pharmacodynamics of a combined oral contraceptive and a generic combined formulation antiretroviral in Malawi. J Acquir Immune Defic Syndr 58(2):e40–e43. https://doi.org/10.1097/QAI.0b013e31822b8bf8

    Article  PubMed  PubMed Central  Google Scholar 

  179. Crauwels HM, van Heeswijk RP, Buelens A, Stevens M, Hoetelmans RM (2014) Lack of an effect of rilpivirine on the pharmacokinetics of ethinylestradiol and norethindrone in healthy volunteers. Int J Clin Pharmacol Ther 52(2):118–128. https://doi.org/10.5414/CP201943

    Article  CAS  PubMed  Google Scholar 

  180. Gerber JG, Rosenkranz SL, Fichtenbaum CJ, Vega JM, Yang A, Alston BL et al (2005) Effect of efavirenz on the pharmacokinetics of simvastatin, atorvastatin, and pravastatin: results of AIDS Clinical Trials Group 5108 Study. J Acquir Immune Defic Syndr 39(3):307–312

    Article  CAS  PubMed  Google Scholar 

  181. Crestor(R) (rosuvastatin) [package insert] (2016) AstraZeneca Pharmaceuticals LP, Wilmington

    Google Scholar 

  182. Lescol(R) XL (fluvastatin extended release) [package insert] (2012) Novartis Pharmaceuticals CoEast, Hanover

    Google Scholar 

  183. Teicher E, Vincent I, Bonhomme-Faivre L, Abbara C, Barrail A, Boissonnas A et al (2007) Effect of highly active antiretroviral therapy on tacrolimus pharmacokinetics in hepatitis C virus and HIV co-infected liver transplant recipients in the ANRS HC-08 study. Clin Pharmacokinet 46(11):941–952. https://doi.org/10.2165/00003088-200746110-00002

    Article  CAS  PubMed  Google Scholar 

  184. Gerber JG, Rhodes RJ, Gal J (2004) Stereoselective metabolism of methadone N-demethylation by cytochrome P4502B6 and 2C19. Chirality 16(1):36–44. https://doi.org/10.1002/chir.10303

    Article  CAS  PubMed  Google Scholar 

  185. Selzentry® (maraviroc) [package insert] (2016) ViiV Healthcare group of companies, Research Triangle Park

    Google Scholar 

  186. Patel IH, Zhang X, Nieforth K, Salgo M, Buss N (2005) Pharmacokinetics, pharmacodynamics and drug interaction potential of enfuvirtide. Clin Pharmacokinet 44(2):175–186. https://doi.org/10.2165/00003088-200544020-00003

    Article  CAS  PubMed  Google Scholar 

  187. Abel S, Back DJ, Vourvahis M (2009) Maraviroc: pharmacokinetics and drug interactions. Antivir Ther 14. https://doi.org/10.3851/imp1297

  188. Tybost(R) (cobicistat) [package insert] (2016) Gilead Sciences, Inc., Foster City

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly K. Scarsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cirrincione, L.R., Scarsi, K.K. (2018). Drug Interactions in HIV: Nucleoside, Nucleotide, and Nonnucleoside Reverse Transcriptase Inhibitors and Entry Inhibitors. In: Pai, M., Kiser, J., Gubbins, P., Rodvold, K. (eds) Drug Interactions in Infectious Diseases: Antimicrobial Drug Interactions. Infectious Disease. Humana Press, Cham. https://doi.org/10.1007/978-3-319-72416-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72416-4_8

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-72415-7

  • Online ISBN: 978-3-319-72416-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics