Skip to main content

Advertisement

Log in

Wet Biomarker-Based Assessment of Steatosis, Inflammation, and Fibrosis in NAFLD

  • Fatty Liver Disease (S Harrison and J George, Section Editors)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Non-alcoholic fatty liver disease (NAFLD) is a disease on the rise; the severe form with steatohepatitis (NASH) may progress to liver cirrhosis with increased morbidity and mortality. Non-invasive biomarkers for the diagnosis of NASH with fibrosis are an area of intensive research. We review the current literature and new research on wet biomarkers for the diagnosis of NASH and fibrosis.

Recent Findings

A number of single parameters as well as composite scores show acceptable efficacy for the prediction of NASH and fibrosis. Composite scores generally use parameters that are usually easily accessible or commercially available. Other markers include the apoptosis marker CK-18, the macrophage activation marker soluble (s)CD163, and others.

Summary

From a clinical point of view, the FIB-4 and NAFLD fibrosis score perform well and are easily accessible compared to some of the commercially available tests. CK-18 and sCD163 are promising for both NASH diagnosis and resolution but need further validation and assay standardisation. The combination of these biomarkers with imaging techniques, e.g. fibroscan, may work synergistically to improve NASH diagnosis and follow-up in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34:274–85.

    Article  CAS  PubMed  Google Scholar 

  2. • Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013;10:686–90. Review and update on NAFLD epidemiology.

    Article  CAS  PubMed  Google Scholar 

  3. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–74.

    Article  CAS  PubMed  Google Scholar 

  4. Ekstedt M, Franzen LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44:865–73.

    Article  CAS  PubMed  Google Scholar 

  5. Soderberg C, Stal P, Askling J, Glaumann H, Lindberg G, Marmur J, et al. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology. 2010;51:595–602.

    Article  PubMed  Google Scholar 

  6. Rafiq N, Bai C, Fang Y, Srishord M, McCullough A, Gramlich T, et al. Long-term follow-up of patients with nonalcoholic fatty liver. Clin Gastroenterol Hepatol. 2009;7:234–8.

    Article  PubMed  Google Scholar 

  7. McPherson S, Stewart SF, Henderson E, Burt AD, Day CP. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut. 2010;59:1265–9.

    Article  PubMed  Google Scholar 

  8. • Sorbi D, Boynton J, Lindor KD. The ratio of aspartate aminotransferase to alanine aminotransferase: potential value in differentiating nonalcoholic steatohepatitis from alcoholic liver disease. Am J Gastroenterol. 1999;94:1018–22. Important study of AST and ALT as marker of NASH.

    Article  CAS  PubMed  Google Scholar 

  9. Angulo P, Keach JC, Batts KP, Lindor KD. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology. 1999;30:1356–62.

    Article  CAS  PubMed  Google Scholar 

  10. Petta S, Vanni E, Bugianesi E, Di Marco V, Camma C, Cabibi D, et al. The combination of liver stiffness measurement and NAFLD fibrosis score improves the noninvasive diagnostic accuracy for severe liver fibrosis in patients with nonalcoholic fatty liver disease. Liver Int. 2015;35:1566–73.

    Article  PubMed  Google Scholar 

  11. • Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45:846–54. First demonstration of the NAFLD Fibrosis score.

    Article  CAS  PubMed  Google Scholar 

  12. Guha IN, Parkes J, Roderick P, Chattopadhyay D, Cross R, Harris S, et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology. 2008;47:455–60.

    Article  PubMed  Google Scholar 

  13. • Cichoz-Lach H, Celinski K, Prozorow-Krol B, Swatek J, Slomka M, Lach T. The BARD score and the NAFLD fibrosis score in the assessment of advanced liver fibrosis in nonalcoholic fatty liver disease. Med Sci Monit. 2012;18:CR735–40. Presentation of the BARD Score.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63:764–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harrison SA, Oliver D, Arnold HL, Gogia S, Neuschwander-Tetri BA. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut. 2008;57:1441–7.

    Article  CAS  PubMed  Google Scholar 

  16. Boursier J, Vergniol J, Guillet A, Hiriart JB, Lannes A, Le Bail B, et al. Diagnostic accuracy and prognostic significance of blood fibrosis tests and liver stiffness measurement by FibroScan in non-alcoholic fatty liver disease. J Hepatol. 2016;65:570–8.

    Article  PubMed  Google Scholar 

  17. Wong VW, Wong GL, Chim AM, Tse AM, Tsang SW, Hui AY, et al. Validation of the NAFLD fibrosis score in a Chinese population with low prevalence of advanced fibrosis. Am J Gastroenterol. 2008;103:1682–8.

    Article  PubMed  Google Scholar 

  18. •• Xiao G, Zhu S, Xiao X, Yan L, Yang J, Wu G. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. Hepatology. 2017. https://doi.org/10.1002/hep.29302. Excellent meta-analysis of laboratory tests and imaging for prediction of NASH fibrosis.

  19. Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ, et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:1104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sumida Y, Yoneda M, Hyogo H, Itoh Y, Ono M, Fujii H, et al. Validation of the FIB4 index in a Japanese nonalcoholic fatty liver disease population. BMC Gastroenterol. 2012;12:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adams LA, George J, Bugianesi E, Rossi E, De Boer WB, van der Poorten D, et al. Complex non-invasive fibrosis models are more accurate than simple models in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2011;26:1536–43.

    Article  CAS  PubMed  Google Scholar 

  22. Shoji H, Yoshio S, Mano Y, Kumagai E, Sugiyama M, Korenaga M, et al. Interleukin-34 as a fibroblast-derived marker of liver fibrosis in patients with non-alcoholic fatty liver disease. Sci Rep. 2016;6:28814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee TH, Han SH, Yang JD, Kim D, Ahmed M. Prediction of advanced fibrosis in nonalcoholic fatty liver disease: an enhanced model of BARD score. Gut Liver. 2013;7:323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ratziu V, Giral P, Charlotte F, Bruckert E, Thibault V, Theodorou I, et al. Liver fibrosis in overweight patients. Gastroenterology. 2000;118:1117–23.

    Article  CAS  PubMed  Google Scholar 

  25. Siddiqui MS, Patidar KR, Boyett S, Luketic VA, Puri P, Sanyal AJ. Performance of non-invasive models of fibrosis in predicting mild to moderate fibrosis in patients with non-alcoholic fatty liver disease. Liver Int. 2016;36:572–9.

    Article  CAS  PubMed  Google Scholar 

  26. Rosenberg WM, Voelker M, Thiel R, Becka M, Burt A, Schuppan D, et al. Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology. 2004;127:1704–13.

    Article  PubMed  Google Scholar 

  27. López IC, Aroca FG, Bernal MD, Mompeán JA, Bernal ÁB, Martínez AM, Barba EM, Velasco JA, Paricio PP. Utility of the ELF Test for Detecting Steatohepatitis in Morbid Obese Patients with Suspicion of Nonalcoholic Fatty Liver Disease. Obes Surg. 2017. https://doi.org/10.1007/s11695-017-2606-9.

  28. Suzuki A, Angulo P, Lymp J, Li D, Satomura S, Lindor K. Hyaluronic acid, an accurate serum marker for severe hepatic fibrosis in patients with non-alcoholic fatty liver disease. Liver Int. 2005;25:779–86.

    Article  CAS  PubMed  Google Scholar 

  29. Lydatakis H, Hager IP, Kostadelou E, Mpousmpoulas S, Pappas S, Diamantis I. Non-invasive markers to predict the liver fibrosis in non-alcoholic fatty liver disease. Liver Int. 2006;26:864–71.

    Article  CAS  PubMed  Google Scholar 

  30. Kaneda H, Hashimoto E, Yatsuji S, Tokushige K, Shiratori K. Hyaluronic acid levels can predict severe fibrosis and platelet counts can predict cirrhosis in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2006;21:1459–65.

    CAS  PubMed  Google Scholar 

  31. Dvorak K, Stritesky J, Petrtyl J, Vitek L, Sroubkova R, Lenicek M, et al. Use of non-invasive parameters of non-alcoholic steatohepatitis and liver fibrosis in daily practice—an exploratory case-control study. PLoS One. 2014;9:e111551.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lykiardopoulos B, Hagstrom H, Fredrikson M, Ignatova S, Stal P, Hultcrantz R, et al. Development of serum marker models to increase diagnostic accuracy of advanced fibrosis in nonalcoholic fatty liver disease: the new LINKI algorithm compared with established algorithms. PLoS One. 2016;11:e0167776.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cales P, Boursier J, Chaigneau J, Laine F, Sandrini J, Michalak S, et al. Diagnosis of different liver fibrosis characteristics by blood tests in non-alcoholic fatty liver disease. Liver Int. 2010;30:1346–54.

    Article  PubMed  Google Scholar 

  34. Chwist A, Hartleb M, Lekstan A, Kukla M, Gutkowski K, Kajor M. A composite model including visfatin, tissue polypeptide-specific antigen, hyaluronic acid, and hematological variables for the diagnosis of moderate-to-severe fibrosis in nonalcoholic fatty liver disease: a preliminary study. Pol Arch Med Wewn. 2014;124:704–12.

    PubMed  Google Scholar 

  35. • Tanwar S, Trembling PM, Guha IN, Parkes J, Kaye P, Burt AD, et al. Validation of terminal peptide of procollagen III for the detection and assessment of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease. Hepatology. 2013;57:103–11. Important study of PIIINP as a marker od NASH fibrosis.

    Article  CAS  PubMed  Google Scholar 

  36. Ergelen R, Akyuz U, Aydin Y, Eren F, Yilmaz Y. Measurements of serum procollagen-III peptide and M30 do not improve the diagnostic accuracy of transient elastography for the detection of hepatic fibrosis in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2015;27:667–71.

    Article  CAS  PubMed  Google Scholar 

  37. Ratziu V, Massard J, Charlotte F, Messous D, Imbert-Bismut F, Bonyhay L, et al. Diagnostic value of biochemical markers (FibroTest-FibroSURE) for the prediction of liver fibrosis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol. 2006;6:6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lassailly G, Caiazzo R, Hollebecque A, Buob D, Leteurtre E, Arnalsteen L, et al. Validation of noninvasive biomarkers (FibroTest, SteatoTest, and NashTest) for prediction of liver injury in patients with morbid obesity. Eur J Gastroenterol Hepatol. 2011;23:499–506.

    Article  PubMed  Google Scholar 

  39. Poynard T, Lassailly G, Diaz E, Clement K, Caiazzo R, Tordjman J, et al. Performance of biomarkers FibroTest, ActiTest, SteatoTest, and NashTest in patients with severe obesity: meta analysis of individual patient data. PLoS One. 2012;7:e30325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Munteanu M, Tiniakos D, Anstee Q, Charlotte F, Marchesini G, Bugianesi E, et al. Diagnostic performance of FibroTest, SteatoTest and ActiTest in patients with NAFLD using the SAF score as histological reference. Aliment Pharmacol Ther. 2016;44:877–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sebastiani G, Castera L, Halfon P, Pol S, Mangia A, Di Marco V, et al. The impact of liver disease aetiology and the stages of hepatic fibrosis on the performance of non-invasive fibrosis biomarkers: an international study of 2411 cases. Aliment Pharmacol Ther. 2011;34:1202–16.

    Article  CAS  PubMed  Google Scholar 

  42. Cales P, Oberti F, Michalak S, Hubert-Fouchard I, Rousselet MC, Konate A, et al. A novel panel of blood markers to assess the degree of liver fibrosis. Hepatology. 2005;42:1373–81.

    Article  PubMed  Google Scholar 

  43. Cales P, Laine F, Boursier J, Deugnier Y, Moal V, Oberti F, et al. Comparison of blood tests for liver fibrosis specific or not to NAFLD. J Hepatol. 2009;50:165–73.

    Article  PubMed  Google Scholar 

  44. • Adams LA, Bulsara M, Rossi E, DeBoer B, Speers D, George J, et al. Hepascore: an accurate validated predictor of liver fibrosis in chronic hepatitis C infection. Clin Chem. 2005;51:1867–73. The Hepascore as a predictor for NASH fibrosis.

    Article  CAS  PubMed  Google Scholar 

  45. Rossi E, Adams LA, Ching HL, Bulsara M, MacQuillan GC, Jeffrey GP. High biological variation of serum hyaluronic acid and Hepascore, a biochemical marker model for the prediction of liver fibrosis. Clin Chem Lab Med. 2013;51:1107–14.

    Article  CAS  PubMed  Google Scholar 

  46. Sumida Y, Yoneda M, Hyogo H, Yamaguchi K, Ono M, Fujii H, et al. A simple clinical scoring system using ferritin, fasting insulin, and type IV collagen 7S for predicting steatohepatitis in nonalcoholic fatty liver disease. J Gastroenterol. 2011;46:257–68.

    Article  CAS  PubMed  Google Scholar 

  47. Nakamura A, Yoneda M, Sumida Y, Eguchi Y, Fujii H, Hyogo H, et al. Modification of a simple clinical scoring system as a diagnostic screening tool for non-alcoholic steatohepatitis in Japanese patients with non-alcoholic fatty liver disease. J Diabetes Investig. 2013;4:651–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Okanoue T, Ebise H, Kai T, Mizuno M, Shima T, Ichihara J, Aoki M.A simple scoring system using type IV collagen 7S and aspartate aminotransferase for diagnosing nonalcoholic steatohepatitis and related fibrosis. J Gastroenterol. 2017. https://doi.org/10.1007/s00535-017-1355-9.

  49. Demir M, Lang S, Nierhoff D, Drebber U, Hardt A, Wedemeyer I, et al. Stepwise combination of simple noninvasive fibrosis scoring systems increases diagnostic accuracy in nonalcoholic fatty liver disease. J Clin Gastroenterol. 2013;47:719–26.

    Article  PubMed  Google Scholar 

  50. Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003;125:437–43.

    Article  PubMed  Google Scholar 

  51. Leers MP, Kolgen W, Bjorklund V, Bergman T, Tribbick G, Persson B, et al. Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J Pathol. 1999;187:567–72.

    Article  CAS  PubMed  Google Scholar 

  52. Cusi K, Chang Z, Harrison S, Lomonaco R, Bril F, Orsak B, et al. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. J Hepatol. 2014;60:167–74.

    Article  CAS  PubMed  Google Scholar 

  53. Kawanaka M, Nishino K, Nakamura J, Urata N, Oka T, Goto D, et al. Correlation between serum cytokeratin-18 and the progression or regression of non-alcoholic fatty liver disease. Ann Hepatol. 2015;14:837–44.

    Article  PubMed  Google Scholar 

  54. Tamimi TI, Elgouhari HM, Alkhouri N, Yerian LM, Berk MP, Lopez R, et al. An apoptosis panel for nonalcoholic steatohepatitis diagnosis. J Hepatol. 2011;54:1224–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. El Bassat H, Ziada DH, Hasby EA, Nagy H, Abo Ryia MH. Apoptotic and anti-apoptotic seromarkers for assessment of disease severity of non-alcoholic steatohepatitis. Arab J Gastroenterol. 2014;15:6–11.

    Article  PubMed  Google Scholar 

  56. Kim YS, Jung ES, Hur W, Bae SH, Choi JY, Song MJ, et al. Noninvasive predictors of nonalcoholic steatohepatitis in Korean patients with histologically proven nonalcoholic fatty liver disease. Clin Mol Hepatol. 2013;19:120–30.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Feldstein AE, Wieckowska A, Lopez AR, Liu YC, Zein NN, McCullough AJ. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology. 2009;50:1072–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shen J, Chan HL, Wong GL, Chan AW, Choi PC, Chan HY, et al. Assessment of non-alcoholic fatty liver disease using serum total cell death and apoptosis markers. Aliment Pharmacol Ther. 2012;36:1057–66.

    Article  CAS  PubMed  Google Scholar 

  59. Rosso C, Caviglia GP, Abate ML, Vanni E, Mezzabotta L, Touscoz GA, et al. Cytokeratin 18-Aspartate396 apoptotic fragment for fibrosis detection in patients with non-alcoholic fatty liver disease and chronic viral hepatitis. Dig Liver Dis. 2016;48:55–61.

    Article  CAS  PubMed  Google Scholar 

  60. Chan WK, Sthaneshwar P, Nik Mustapha NR, Mahadeva S. Limited utility of plasma M30 in discriminating non-alcoholic steatohepatitis from steatosis—a comparison with routine biochemical markers. PLoS One. 2014;9:e105903.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hasegawa Y, Kim SR, Hatae T, Ohta M, Fujinami A, Sugimoto K, et al. Usefulness of cytokeratin-18M65 in diagnosing non-alcoholic steatohepatitis in Japanese population. Dig Dis. 2015;33:715–20.

    Article  PubMed  Google Scholar 

  62. Wieckowska A, Zein NN, Yerian LM, Lopez AR, McCullough AJ, Feldstein AE. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology. 2006;44:27–33.

    Article  CAS  PubMed  Google Scholar 

  63. Grigorescu M, Crisan D, Radu C, Grigorescu MD, Sparchez Z, Serban A. A novel pathophysiological-based panel of biomarkers for the diagnosis of nonalcoholic steatohepatitis. J Physiol Pharmacol. 2012;63:347–53.

    CAS  PubMed  Google Scholar 

  64. Musso G, Gambino R, Cassader M, Pagano G. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med. 2011;43:617–49.

    Article  PubMed  Google Scholar 

  65. • Kwok R, Tse YK, Wong GL, Ha Y, Lee AU, Ngu MC, et al. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease—the role of transient elastography and plasma cytokeratin-18 fragments. Aliment Pharmacol Ther. 2014;39:254–69. Important meta-analysis of CK-18 as a marker of NAFLD.

    Article  CAS  PubMed  Google Scholar 

  66. Cao W, Zhao C, Shen C, Wang Y. Cytokeratin 18, alanine aminotransferase, platelets and triglycerides predict the presence of nonalcoholic steatohepatitis. PLoS One. 2013;8:e82092.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Anty R, Iannelli A, Patouraux S, Bonnafous S, Lavallard VJ, Senni-Buratti M, et al. A new composite model including metabolic syndrome, alanine aminotransferase and cytokeratin-18 for the diagnosis of non-alcoholic steatohepatitis in morbidly obese patients. Aliment Pharmacol Ther. 2010;32:1315–22.

    Article  CAS  PubMed  Google Scholar 

  68. Polyzos SA, Kountouras J, Papatheodorou A, Katsiki E, Patsiaoura K, Zafeiriadou E, et al. Adipocytokines and cytokeratin-18 in patients with nonalcoholic fatty liver disease: introduction of CHA index. Ann Hepatol. 2013;12:749–57.

    CAS  PubMed  Google Scholar 

  69. Yang M, Xu D, Liu Y, Guo X, Li W, Guo C, et al. Combined serum biomarkers in non-invasive diagnosis of non-alcoholic steatohepatitis. PLoS One. 2015;10:e0131664.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shen J, Chan HL, Wong GL, Choi PC, Chan AW, Chan HY, et al. Non-invasive diagnosis of non-alcoholic steatohepatitis by combined serum biomarkers. J Hepatol. 2012;56:1363–70.

    Article  CAS  PubMed  Google Scholar 

  71. Younossi ZM, Page S, Rafiq N, Birerdinc A, Stepanova M, Hossain N, et al. A biomarker panel for non-alcoholic steatohepatitis (NASH) and NASH-related fibrosis. Obes Surg. 2011;21:431–9.

    Article  PubMed  Google Scholar 

  72. Stienstra R, Saudale F, Duval C, Keshtkar S, Groener JE, van Rooijen N, et al. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology. 2010;51:511–22.

    Article  CAS  PubMed  Google Scholar 

  73. Tomita K, Tamiya G, Ando S, Ohsumi K, Chiyo T, Mizutani A, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 2006;55:415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. •• Kazankov K, Barrera F, Moller HJ, Rosso C, Bugianesi E, David E, et al. The macrophage activation marker sCD163 is associated with morphological disease stages in patients with non-alcoholic fatty liver disease. Liver Int. 2016;36:1549–57. Soluble CD163 as a predictor for NASH fibrosis in two independent cohorts of NAFLD patients.

    Article  CAS  PubMed  Google Scholar 

  75. Kazankov K, Tordjman J, Moller HJ, Vilstrup H, Poitou C, Bedossa P, et al. Macrophage activation marker soluble CD163 and non-alcoholic fatty liver disease in morbidly obese patients undergoing bariatric surgery. J Gastroenterol Hepatol. 2015;30:1293–300.

    Article  CAS  PubMed  Google Scholar 

  76. Mueller JL, Feeney ER, Zheng H, Misdraji J, Kruger AJ, Alatrakchi N, et al. Circulating soluble CD163 is associated with Steatohepatitis and advanced fibrosis in nonalcoholic fatty liver disease. Clin Transl Gastroenterol. 2015;6:e114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fjeldborg K, Pedersen SB, Moller HJ, Rask P, Danielsen AV, Stodkilde-Jorgensen H, et al. Intrahepatic fat content correlates with soluble CD163 in relation to weight loss induced by Roux-en-Y gastric bypass. Obesity (Silver Spring). 2015;23:154–61.

    Article  CAS  Google Scholar 

  78. Fjeldborg K, Christiansen T, Bennetzen M, Møller HJ, Pedersen SB, Richelsen B. The macrophage-specific serum marker, soluble CD163, is increased in obesity and reduced after dietary-induced weight loss. Obesity (Silver Spring). 2013;21:2437–43.

    Article  CAS  Google Scholar 

  79. Kazankov K, Moller HJ, Lange A, Birkebaek NH, Holland-Fischer P, Solvig J, et al. The macrophage activation marker sCD163 is associated with changes in NAFLD and metabolic profile during lifestyle intervention in obese children. Pediatr Obes. 2015;10:226–33.

    Article  CAS  PubMed  Google Scholar 

  80. Rodgaard-Hansen S, St George A, Kazankov K, Bauman A, George J, Gronbaek H, et al. Effects of lifestyle intervention on soluble CD163, a macrophage activation marker, in patients with non-alcoholic fatty liver disease. Scand J Clin Lab Invest. 2017;77:498-504.

  81. Szabo G, Csak T. Role of microRNAs in NAFLD/NASH. Dig Dis Sci. 2016;61:1314–24.

    Article  CAS  PubMed  Google Scholar 

  82. Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One. 2011;6:e23937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu XL, Pan Q, Zhang RN, Shen F, Yan SY, Sun C, et al. Disease-specific miR-34a as diagnostic marker of non-alcoholic steatohepatitis in a Chinese population. World J Gastroenterol. 2016;22:9844–52.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Miyaaki H, Ichikawa T, Kamo Y, Taura N, Honda T, Shibata H, et al. Significance of serum and hepatic microRNA-122 levels in patients with non-alcoholic fatty liver disease. Liver Int. 2014;34:e302–7.

    Article  CAS  PubMed  Google Scholar 

  85. Pirola CJ, Fernandez Gianotti T, Castano GO, Mallardi P, San Martino J, Mora Gonzalez Lopez Ledesma M, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut. 2015;64:800–12.

    Article  CAS  PubMed  Google Scholar 

  86. Akuta N, Kawamura Y, Suzuki F, Saitoh S, Arase Y, Kunimoto H, et al. Impact of circulating miR-122 for histological features and hepatocellular carcinoma of nonalcoholic fatty liver disease in Japan. Hepatol Int. 2016;10:647–56.

    Article  PubMed  Google Scholar 

  87. Akuta N, Kawamura Y, Suzuki F, Saitoh S, Arase Y, Fujiyama S, et al. Analysis of association between circulating miR-122 and histopathological features of nonalcoholic fatty liver disease in patients free of hepatocellular carcinoma. BMC Gastroenterol. 2016;16:141.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Becker PP, Rau M, Schmitt J, Malsch C, Hammer C, Bantel H, et al. Performance of serum microRNAs -122, -192 and -21 as biomarkers in patients with non-alcoholic steatohepatitis. PLoS One. 2015;10:e0142661.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tan Y, Ge G, Pan T, Wen D, Gan J. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS One. 2014;9:e105192.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lefere S, Van de Velde F, Devisscher L, Bekaert M, Raevens S, Verhelst X, et al. Serum vascular cell adhesion molecule-1 predicts significant liver fibrosis in non-alcoholic fatty liver disease. Int J Obes. 2017;41:1207–13.

    Article  CAS  Google Scholar 

  91. Yoshimura K, Okanoue T, Ebise H, Iwasaki T, Mizuno M, Shima T, et al. Identification of novel noninvasive markers for diagnosing nonalcoholic steatohepatitis and related fibrosis by data mining. Hepatology. 2016;63:462–73.

    Article  CAS  PubMed  Google Scholar 

  92. Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 2017;25:1054–62. e1055

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Grønbæk.

Ethics declarations

Conflict of Interest

Peter Lykke Eriksen, Karen Louise Thomsen, Tea Lund Laursen, Konstantin Kazankov, and Sara Heebøll each declares no potential conflicts of interest.

Henning Grønbæk reports grants from Intercept and Abbvie and personal fees from Ipsen, Novartis, and Sanofi.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Fatty Liver Disease

Peter Lykke Eriksen and Karen Louise Thomsen shared first co-authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eriksen, P.L., Thomsen, K.L., Laursen, T.L. et al. Wet Biomarker-Based Assessment of Steatosis, Inflammation, and Fibrosis in NAFLD. Curr Hepatology Rep 16, 308–316 (2017). https://doi.org/10.1007/s11901-017-0369-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-017-0369-3

Keywords

Navigation