Skip to main content

Advertisement

Log in

An Update on the Clinical Evaluation of Antibody-Based Therapeutics in Acute Myeloid Leukemia

  • Acute Myeloid Leukemias (U Borate, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The advent of several targeted agents has revolutionized the treatment of acute myeloid leukemia (AML) in recent times; however, majority of patients are still not cured. In the ongoing quest for rationally targeted treatment strategies in AML, scientific endeavors have focused on identifying new antigen targets on the leukemic cells for therapeutic exploitation including strategies to directly deliver toxins into the leukemic blasts as well as strategies that harness host immunity to favorably impact clinical outcomes. Gemtuzumab ozogamicin, a CD33 directed antibody-drug conjugate, has provided the proof of concept for the potential efficacy of monoclonal antibody-based therapies in AML. This article provides an overview of immunologically relevant antigen targets expressed on the leukemic cells and synopsizes the clinical results evaluating targeted antibody-based therapeutic approach in AML.

Recent Findings

AML blasts and leukemic stem cells express several antigens, including CD33, CD47, CD70, CD123, and CLEC12A. The past several years have seen the burgeoning of cell-specific immunotherapy concepts, including checkpoint inhibitors, antibody–toxin conjugates, and bispecific antibodies in the treatment of AML. The first-in-class anti-CD47 antibody magrolimab and anti-CD70 antibody cusatuzumab in combination with hypomethylating agent (HMA) azacitidine, in newly diagnosed AML, and flotetuzumab, a bispecific DART® (dual-affinity retargeting) antibody to CD3ε and CD123 as salvage option in relapsed/refractory AML appear promising.

Summary

The development of antibody-based immunotherapeutic approach in AML has been encouraging. Ongoing research will define the choice of an appropriate complementary therapeutic agent in antibody-based combination therapy, and whether one or more than one antigen should be simultaneously targeted. Further studies will likely refine the role of antibody-based therapy in post hematopoietic cell transplant setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.

    Article  PubMed  Google Scholar 

  2. Klepin HD, Estey E, Kadia T. More versus less therapy for older adults with acute myeloid leukemia: new perspectives on an old debate. Am Soc Clin Oncol Educ Book. 2019;39:421–32.

    Article  PubMed  Google Scholar 

  3. Wass M, Hitz F, Schaffrath J, Müller-Tidow C, Müller LP. Value of different comorbidity indices for predicting outcome in patients with acute myeloid leukemia. PLoS One. 2016;11:e0164587.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Giles FJ, Borthakur G, Ravandi F, et al. The haematopoietic cell transplantation comorbidity index score is predictive of early death and survival in patients over 60 years of age receiving induction therapy for acute myeloid leukaemia. Br J Haematol. 2007;136:624–7.

    Article  PubMed  Google Scholar 

  5. Estey EH. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol. 2018;93:1267–91.

    Article  PubMed  Google Scholar 

  6. Grossbard ML, Press O, Appelbaum F, Bernstein I, Nadler L. Monoclonal antibody-based therapies of leukemia and lymphoma. Blood. 1992;80:863–78.

    Article  CAS  PubMed  Google Scholar 

  7. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  CAS  PubMed  Google Scholar 

  8. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–43.

    Article  CAS  PubMed  Google Scholar 

  9. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  CAS  PubMed  Google Scholar 

  10. Khalidi HS, Medeiros LJ, Chang KL, Brynes RK, Slovak ML, Arber DA. The immunophenotype of adult acute myeloid leukemia: high frequency of lymphoid antigen expression and comparison of immunophenotype, French-American-British classification, and karyotypic abnormalities. Am J Clin Pathol. 1998;109:211–20.

    Article  CAS  PubMed  Google Scholar 

  11. Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–84.

    Article  CAS  PubMed  Google Scholar 

  12. van Rhenen A, Moshaver B, Kelder A, et al. Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission. Leukemia. 2007;21:1700–7.

    Article  PubMed  Google Scholar 

  13. Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138:286–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Riether C, Schürch CM, Bührer ED, et al. CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. J Exp Med. 2017;214:359–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shuptrine CW, Surana R, Weiner LM. Monoclonal antibodies for the treatment of cancer. Semin Cancer Biol. 2012: Elsevier;12:3–13.

    Article  Google Scholar 

  16. Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol. 2004;4:336–47.

    Article  CAS  PubMed  Google Scholar 

  17. Ohta A. A Metabolic immune checkpoint: adenosine in tumor microenvironment. Front Immunol. 2016;7:109.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1:405–13.

    Article  CAS  PubMed  Google Scholar 

  19. Williams P, Basu S, Garcia-Manero G, et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer. 2019;125:1470–81.

    Article  CAS  PubMed  Google Scholar 

  20. Abdollahpour-Alitappeh M, Lotfinia M, Gharibi T, et al. Antibody–drug conjugates (ADCs) for cancer therapy: strategies, challenges, and successes. J Cell Physiol. 2019;234:5628–42.

    Article  CAS  PubMed  Google Scholar 

  21. Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 2015;20:838–47.

    Article  CAS  PubMed  Google Scholar 

  22. Moore PA, Zhang W, Rainey GJ, et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 2011;117:4542–51.

    Article  CAS  PubMed  Google Scholar 

  23. Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119:6198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hills RK, Castaigne S, Appelbaum FR, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15:986–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol. 2005;23:4110–6.

    Article  CAS  PubMed  Google Scholar 

  27. Cortes JE, DeAngelo DJ, Erba HP, et al. Maturing clinical profile of IMGN779, a next-generation CD33-targeting antibody-drug conjugate, in patients with relapsed or refractory acute myeloid leukemia. Blood. 2018;132:26.

    Article  Google Scholar 

  28. Marion Subklewe AS, Walter RB, Bhatia R, Wei AH, Ritchie D, Buecklein V, Vachhani P, Dai T, Hindoyan A, Agarwal S, Anderson A, Khaldoyanidi S, Ravandi F. Updated results from a phase 1 first-in-human dose escalation study OF AMG 673, a novel anti-CD33/CD3 BITE® (bispecific T-cell engager) in patients with relapsed/refractory acute myeloid leukemia. EHA. Virtual 2020.

  29. Ravandi F, Walter RB, Subklewe M, et al. Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML). J Clin Oncol. 2020;38:7508.

    Article  Google Scholar 

  30. Tsai RK, Discher DE. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol. 2008;180:989–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaiswal S, Jamieson CHM, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138:271–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu J, Wang L, Zhao F, et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS One. 2015;10:e0137345.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Feng D, Gip P, McKenna KM, et al. Combination treatment with 5F9 and azacitidine enhances phagocytic elimination of acute myeloid leukemia. Blood. 2018;132:2729.

    Article  Google Scholar 

  34. Sallman DA, Malki MA, Asch AS, et al. Tolerability and efficacy of the first-in-class anti-CD47 antibody magrolimab combined with azacitidine in MDS and AML patients: Phase Ib results. J Clin Oncol. 2020;38:7507.

    Article  Google Scholar 

  35. Nolte MA, van Olffen RW, van Gisbergen KP, van Lier RA. Timing and tuning of CD27-CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. Immunol Rev 2009;229:216-231.

  36. Riether C, Pabst T, Höpner S, et al. Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents. Nat Med. 2020;26:1459–67.

    Article  CAS  PubMed  Google Scholar 

  37. Muñoz L, Nomdedéu JF, López O, et al. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica. 2001;86:1261–9.

    PubMed  Google Scholar 

  38. Ihle JN. Interleukin-3 and hematopoiesis. Chem Immunol. 1992;51:65–106.

    CAS  PubMed  Google Scholar 

  39. Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98:2301–7.

    Article  CAS  PubMed  Google Scholar 

  40. Testa U, Riccioni R, Militi S, et al. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood. 2002;100:2980–8.

    Article  CAS  PubMed  Google Scholar 

  41. Haubner S, Perna F, Köhnke T, et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia. 2019;33:64–74.

    Article  CAS  PubMed  Google Scholar 

  42. Pemmaraju N, Lane AA, Sweet KL, et al. Results of pivotal phase 2 clinical trial of tagraxofusp (SL-401) in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). Blood. 2018;132:765.

    Article  Google Scholar 

  43. Frankel A, Liu JS, Rizzieri D, Hogge D. Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk Lymphoma. 2008;49:543–53.

    Article  CAS  PubMed  Google Scholar 

  44. Montesinos P, Roboz GJ, Bulabois C-E, et al. Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: results from a multicenter, randomized, phase 2/3 study. Leukemia. 2020;35:62–74.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ravandi F, Bashey A, Foran JM, et al. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of XmAb14045, a CD123 x CD3 T cell-engaging bispecific antibody: initial results of a phase 1 study. Blood. 2018;132:–763.

  46. Uy GL, Aldoss I, Foster MC, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood. 2020;37:751–62.

    Google Scholar 

  47. Vadakekolathu J, Minden MD, Hood T, et al. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci Transl Med. 2020;12:eaaz0463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Daver NG, Montesinos P, DeAngelo DJ, et al. Clinical profile of IMGN632, a novel CD123-targeting antibody-drug conjugate (ADC), in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) or blastic plasmacytoid dendritic cell neoplasm (BPDCN). Blood. 2019;134:734.

    Article  Google Scholar 

  49. Daver NG, Wang ES, Sweet KL, et al. A phase Ib/II study of the CD123-targeting antibody-drug conjugate IMGN632 as monotherapy or in combination with venetoclax and/or azacitidine for patients with CD123-positive acute myeloid leukemia. J Clin Oncol. 2020;38:TPS7564.

    Article  Google Scholar 

  50. Bakker AB, van den Oudenrijn S, Bakker AQ, et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res. 2004;64:8443–50.

    Article  CAS  PubMed  Google Scholar 

  51. Chen C-H, Floyd H, Olson NE, et al. Dendritic-cell-associated C-type lectin 2 (DCAL-2) alters dendritic-cell maturation and cytokine production. Blood. 2006;107:1459–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bill M, van Kooten Niekerk PB, Woll PS, et al. Mapping the CLEC 12A expression on myeloid progenitors in normal bone marrow; implications for understanding CLEC 12A-related cancer stem cell biology. J Cell Mol Med. 2018;22:2311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Y-Y, Chen W-L, Weng X-Q, et al. Low CLL-1 expression is a novel adverse predictor in 123 patients with de novo CD34+ acute myeloid leukemia. Stem Cells Dev. 2017;26:1460–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Van Loo PF, Doornbos R, Dolstra H, Shamsili S, Bakker L. Preclinical evaluation of MCLA117, a CLEC12AxCD3 bispecific antibody efficiently targeting a novel leukemic stem cell associated antigen in AML. Washington: American Society of Hematology; 2015.

    Google Scholar 

  55. John Mascarenhas JC, Huls G, Venditti A, Breems D, De Botton S, Deangelo D, van de Loosdrecht A, Jongen-Lavrencic M, Borthakur G, Boosman R, Doornbos R, Bakker L, Mittag D, van Bueren JL, Stalbovskaya V, Ford J, Bol K, Wasserman E, Fjällskog M-L, Cloos J, Koeman K-J, Ossenkoppele G. Update from the ongoing phase I multinational study of MCLA-117, a bispecifiC CLEC12A x CD3 T-cell engager, in patients (PTS) with acute myelogenous leukemia (AML). EHA; 2020 06/12/20; Virtual.

  56. Yang H, Bueso-Ramos C, DiNardo C, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014;28:1280–8.

    Article  CAS  PubMed  Google Scholar 

  57. Daver N, Garcia-Manero G, Basu S, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Disc. 2019;9:370–83.

    Article  CAS  Google Scholar 

  58. Assi R, Kantarjian HM, Daver NG, et al. Results of a phase 2, open-label study of idarubicin (I), cytarabine (A) and nivolumab (Nivo) in patients with newly diagnosed acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS). Blood. 2018;132:905.

    Article  Google Scholar 

  59. Daver NG, Garcia-Manero G, Konopleva MY, et al. Azacitidine (AZA) with nivolumab (Nivo), and AZA with nivo + ipilimumab (Ipi) in relapsed/refractory acute myeloid leukemia: a non-randomized, prospective, phase 2 study. Blood. 2019;134:830.

    Article  Google Scholar 

  60. Lapusan S, Vidriales MB, Thomas X, et al. Phase I studies of AVE9633, an anti-CD33 antibody-maytansinoid conjugate, in adult patients with relapsed/refractory acute myeloid leukemia. Investig New Drugs. 2012;30:1121–31.

    Article  CAS  Google Scholar 

  61. Stein EM, Walter RB, Erba HP, et al. A phase 1 trial of vadastuximab talirine as monotherapy in patients with CD33-positive acute myeloid leukemia. Blood. 2018;131:387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang ES, Adés L, Fathi AT, et al. CASCADE: A phase 3, randomized, double-blind study of vadastuximab talirine (33A) versus placebo in combination with azacitidine or decitabine in the treatment of older patients with newly diagnosed acute myeloid leukemia (AML). J Clin Oncol. 2017;35:TPS7066.

    Article  Google Scholar 

  63. Goldberg AD, Atallah E, Rizzieri D, et al. Camidanlumab tesirine, an antibody-drug conjugate, in relapsed/refractory CD25-positive acute myeloid leukemia or acute lymphoblastic leukemia: A phase I study. Leuk Res. 2020;95:106385.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Dr. Ravandi has received research funding from Amgen, Macrogenics, Xencor, Taiho, Astex, Abbvie and has been member of advisory boards with Amgen, Xencor, Celgene, BMS, AstraZeneca, Syros, Taiho, Novartis, Astellas, Agios, Innate Pharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Ravandi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The article is part of the Topical Collection on Acute Myeloid Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venugopal, S., Daver, N. & Ravandi, F. An Update on the Clinical Evaluation of Antibody-Based Therapeutics in Acute Myeloid Leukemia. Curr Hematol Malig Rep 16, 89–96 (2021). https://doi.org/10.1007/s11899-021-00612-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-021-00612-w

Keywords

Navigation