Skip to main content
Log in

Pulmonary Hypertension Due to Left Ventricular Cardiomyopathy: Is it the Result or Cause of Disease Progression?

  • Prevention of Heart Failure (M. St. John Sutton, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to define pulmonary hypertension in the setting of left heart disease (PH-LHD), discuss its epidemiology and pathophysiology, and highlight the cause and effect relationship it has with disease progression in the setting of cardiomyopathy.

Recent Findings

Both pulmonary hypertension (PH) and heart failure are becoming increasingly common. As such, PH-LHD is now the most common form of PH. The pathophysiology of the condition relates to backward transmission of elevated left ventricular filling pressures into the pulmonary circulation and, ultimately, right ventricular (RV) strain/dysfunction. It is evident that these pathophysiologic processes are both the effect and cause of left heart disease progression.

Summary

In this review, we describe the complex relationship between disease progression in left ventricular cardiomyopathy and PH-LHD. Clinicians and researchers should take note of the importance of PH-LHD and RV dysfunction to appropriately risk stratify patients and develop therapies for the condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Mazurek JA, Jessup M. Understanding heart failure. Heart Fail Clin. 2017;13:1–19. https://doi.org/10.1016/j.hfc.2016.07.001.

    Article  PubMed  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update. Circulation. 2015:CIR.0000000000000350; https://doi.org/10.1161/CIR.0000000000000350.

  3. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147–239. https://doi.org/10.1016/j.jacc.2013.05.019.

    Article  PubMed  Google Scholar 

  4. •• Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertensionThe Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119. https://doi.org/10.1093/eurheartj/ehv317. This is an excellent recent guideline document on the topic of pulmonary hypertension.

    Article  PubMed  Google Scholar 

  5. Vachiéry J-L, Adir Y, Barberà JA, Champion H, Coghlan JG, Cottin V, et al. Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol. 2013;62:D100–8. https://doi.org/10.1016/j.jacc.2013.10.033.

    Article  PubMed  Google Scholar 

  6. •• Rosenkranz S, Gibbs JSR, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiéry J-L. Left ventricular heart failure and pulmonary hypertension. Eur Heart J. 2016;37:942–54. https://doi.org/10.1093/eurheartj/ehv512. This is an excellent update article on the specific topic of PH-LHD.

    Article  PubMed  Google Scholar 

  7. Gerges C, Gerges M, Lang MB, Zhang Y, Jakowitsch J, Probst P, et al. Diastolic pulmonary vascular pressure gradient. Chest. 2013;143:758–66. https://doi.org/10.1378/chest.12-1653.

    Article  PubMed  Google Scholar 

  8. Tampakakis E, Leary PJ, Selby VN, Marco TD, Cappola TP, Felker GM, et al. The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease. JACC Heart Fail. 2015;3:9–16. https://doi.org/10.1016/j.jchf.2014.07.010.

    Article  PubMed  Google Scholar 

  9. Tedford RJ, Beaty CA, Mathai SC, Kolb TM, Damico R, Hassoun PM, et al. Prognostic value of the pre-transplant diastolic pulmonary artery pressure to pulmonary capillary wedge pressure gradient (DPG) in cardiac transplant recipients with pulmonary hypertension. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2014;33:289–97. https://doi.org/10.1016/j.healun.2013.11.008.

    Article  Google Scholar 

  10. Al-Naamani N, Preston IR, Paulus JK, Hill NS, Roberts KE. Pulmonary arterial capacitance is an important predictor of mortality in heart failure with a preserved ejection fraction. JACC Heart Fail. 2015;3:467–74. https://doi.org/10.1016/j.jchf.2015.01.013.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gerges M, Gerges C, Pistritto A-M, Lang MB, Trip P, Jakowitsch J, et al. Pulmonary hypertension in heart failure. epidemiology, right ventricular function, and survival. Am J Respir Crit Care Med. 2015;192:1234–46. https://doi.org/10.1164/rccm.201503-0529OC.

    Article  PubMed  Google Scholar 

  12. Assad TR, Hemnes AR, Larkin EK, Glazer AM, Xu M, Wells QS, et al. Clinical and biological insights into combined post- and pre-capillary pulmonary hypertension. J Am Coll Cardiol. 2016;68:2525–36. https://doi.org/10.1016/j.jacc.2016.09.942.

    Article  PubMed  Google Scholar 

  13. Mazurek JA, Horne BD, Saeed W, Sardar MR, Zolty R. Galectin-3 levels are elevated and predictive of mortality in pulmonary hypertension. Heart Lung Circ. 2017; https://doi.org/10.1016/j.hlc.2016.12.012.

  14. Caravita S, Faini A, Deboeck G, Bondue A, Naeije R, Parati G, et al. Pulmonary hypertension and ventilation during exercise: role of the pre-capillary component. J Heart Lung Transplant. 2017;36:754–62. https://doi.org/10.1016/j.healun.2016.12.011.

    Article  PubMed  Google Scholar 

  15. Mazurek JA, Forfia PR. Enhancing the accuracy of echocardiography in the diagnosis of pulmonary arterial hypertension: looking at the heart to learn about the lungs. Curr Opin Pulm Med. 2013;19:437–45. https://doi.org/10.1097/MCP.0b013e3283645966.

    Article  PubMed  Google Scholar 

  16. Mazurek JA, Vaidya A, Grandin EW, Forfia P. RVOT Doppler notching predicts diastolic-to-wedge gradient in left heart disease-associated pulmonary hypertension. J Am Coll Cardiol. 2015;65:A1537. https://doi.org/10.1016/S0735-1097(15)61537-6.

    Article  Google Scholar 

  17. Lam CSP, Borlaug BA, Kane GC, Enders FT, Rodeheffer RJ, Redfield MM. Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation. 2009;119:2663–70. https://doi.org/10.1161/CIRCULATIONAHA.108.838698.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lam CSP, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53:1119–26. https://doi.org/10.1016/j.jacc.2008.11.051.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Leung CC, Moondra V, Catherwood E, Andrus BW. Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am J Cardiol. 2010;106:284–6. https://doi.org/10.1016/j.amjcard.2010.02.039.

    Article  PubMed  Google Scholar 

  20. Shah AM, Shah SJ, Anand IS, Sweitzer NK, O’Meara E, Heitner JF, et al. Cardiac structure and function in heart failure with preserved ejection FractionClinical Perspective. Circ Heart Fail. 2014;7:104–15. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000887.

    Article  CAS  PubMed  Google Scholar 

  21. Farr G, Shah K, Markley R, Abbate A, Salloum FN, Grinnan D. Development of pulmonary hypertension in heart failure with preserved ejection fraction. Prog Cardiovasc Dis. 2016;59:52–8. https://doi.org/10.1016/j.pcad.2016.06.002.

    Article  PubMed  Google Scholar 

  22. Zotter-Tufaro C, Duca F, Kammerlander AA, Koell B, Aschauer S, Dalos D, et al. Diastolic pressure gradient predicts outcome in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2015;66:1308–10. https://doi.org/10.1016/j.jacc.2015.07.011.

    Article  PubMed  Google Scholar 

  23. Guazzi M, Borlaug BA. Pulmonary hypertension due to left heart disease. Circulation. 2012;126:975–90. https://doi.org/10.1161/CIRCULATIONAHA.111.085761.

    Article  PubMed  Google Scholar 

  24. Butler J, Chomsky DB, Wilson JR. Pulmonary hypertension and exercise intolerance in patients with heart failure. J Am Coll Cardiol. 1999;34:1802–6. https://doi.org/10.1016/S0735-1097(99)00408-8.

    Article  CAS  PubMed  Google Scholar 

  25. Bursi F, McNallan SM, Redfield MM, Nkomo VT, Lam CSP, Weston SA, et al. Pulmonary pressures and death in heart failure. J Am Coll Cardiol. 2012;59:222–31. https://doi.org/10.1016/j.jacc.2011.06.076.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Salamon JN, Kelesidis I, Msaouel P, Mazurek JA, Mannem S, Adzic A, et al. Outcomes in World Health Organization group II pulmonary hypertension: mortality and readmission trends with systolic and preserved ejection fraction–induced pulmonary hypertension. J Card Fail. 2014;20:467–75. https://doi.org/10.1016/j.cardfail.2014.05.003.

    Article  PubMed  Google Scholar 

  27. Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction. JACC Heart Fail. 2013;1:290–9. https://doi.org/10.1016/j.jchf.2013.05.001.

    Article  PubMed  Google Scholar 

  28. Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37:183–8. https://doi.org/10.1016/S0735-1097(00)01102-5.

    Article  CAS  PubMed  Google Scholar 

  29. Patel JB, Borgeson DD, Barnes ME, Rihal CS, Daly RC, Redfield MM. Mitral regurgitation in patients with advanced systolic heart failure. J Card Fail. 2004;10:285–91. https://doi.org/10.1016/j.cardfail.2003.12.006.

    Article  PubMed  Google Scholar 

  30. Guazzi M, Labate V. Pulmonary hypertension in heart failure patients: pathophysiology and prognostic implications. Curr Heart Fail Rep. 2016;13:281–94. https://doi.org/10.1007/s11897-016-0306-8.

    Article  CAS  PubMed  Google Scholar 

  31. Kutty RS, Parameshwar J, Lewis C, Catarino PA, Sudarshan CD, Jenkins DP, et al. Use of centrifugal left ventricular assist device as a bridge to candidacy in severe heart failure with secondary pulmonary hypertension. Eur J Cardiothorac Surg. 2013;43:1237–42. https://doi.org/10.1093/ejcts/ezs678.

    Article  PubMed  Google Scholar 

  32. Lundgren J, Algotsson L, Kornhall B, Rådegran G. Preoperative pulmonary hypertension and its impact on survival after heart transplantation. Scand Cardiovasc J. 2014;48:47–58. https://doi.org/10.3109/14017431.2013.877153.

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Guo H, Xu D, Xu X, Wang H, Hu X, et al. Left ventricular failure produces profound lung remodeling and pulmonary hypertension in mice: heart failure causes severe lung disease. Hypertension. 2012;59:1170–8. https://doi.org/10.1161/HYPERTENSIONAHA.111.186072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Delgado JF, Delgado JF. The pulmonary circulation in heart failure. Rev Esp Cardiol. 2010;63:334–45. https://doi.org/10.1016/S1885-5857(10)70066-9.

    Article  PubMed  Google Scholar 

  35. Tedford RJ, Hassoun PM, Mathai SC, Girgis RE, Russell SD, Thiemann DR, et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation. 2012;125:289–97. https://doi.org/10.1161/CIRCULATIONAHA.111.051540.

    Article  PubMed  Google Scholar 

  36. Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle–pulmonary circulation unit. Circulation. 2009;120:992–1007. https://doi.org/10.1161/CIRCULATIONAHA.106.674028.

    Article  PubMed  Google Scholar 

  37. Guazzi M, Bandera F, Pelissero G, Castelvecchio S, Menicanti L, Ghio S, et al. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am J Physiol - Heart Circ Physiol. 2013;305:H1373–81. https://doi.org/10.1152/ajpheart.00157.2013.

    Article  CAS  PubMed  Google Scholar 

  38. Guazzi M, Naeije R, Arena R, Corrà U, Ghio S, Forfia P, et al. Echocardiography of right ventriculoarterial coupling combined with cardiopulmonary exercise testing to predict outcome in heart failure. Chest. 2015;148:226–34. https://doi.org/10.1378/chest.14-2065.

    Article  PubMed  Google Scholar 

  39. Methvin AB, Owens AT, Emmi AG, Allen M, Wiegers SE, Dries DL, et al. Ventilatory inefficiency reflects right ventricular dysfunction in systolic heart failure. Chest. 2011;139:617–25. https://doi.org/10.1378/chest.10-0318.

    Article  PubMed  Google Scholar 

  40. Lewis GD, Shah RV, Pappagianopolas PP, Systrom DM, Semigran MJ. Determinants of ventilatory efficiency in heart failure. Circ Heart Fail. 2008;1:227–33. https://doi.org/10.1161/CIRCHEARTFAILURE.108.785501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bosch L, Lam CSP, Gong L, Chan SP, Sim D, Yeo D, et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction: right ventricular dysfunction in heart failure. Eur J Heart Fail. 2017; https://doi.org/10.1002/ejhf.873.

  42. Dexter L. Atrial Septal Defect Heart. 1956;18:209–25. https://doi.org/10.1136/hrt.18.2.209.

    CAS  Google Scholar 

  43. Ghio S, Guazzi M, Scardovi AB, Klersy C, Clemenza F, Carluccio E, et al. Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur J Heart Fail. 2017;19:873–9. https://doi.org/10.1002/ejhf.664.

    Article  CAS  PubMed  Google Scholar 

  44. Dini FL, Carluccio E, Simioniuc A, Biagioli P, Reboldi G, Galeotti GG, et al. Right ventricular recovery during follow-up is associated with improved survival in patients with chronic heart failure with reduced ejection fraction: right ventricular recovery in heart failure. Eur J Heart Fail. 2016;18:1462–71. https://doi.org/10.1002/ejhf.639.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy A. Mazurek.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Prevention of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adusumalli, S., Mazurek, J.A. Pulmonary Hypertension Due to Left Ventricular Cardiomyopathy: Is it the Result or Cause of Disease Progression?. Curr Heart Fail Rep 14, 507–513 (2017). https://doi.org/10.1007/s11897-017-0368-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-017-0368-2

Keywords

Navigation