Skip to main content

Advertisement

Log in

Venous Congestion, Endothelial and Neurohormonal Activation in Acute Decompensated Heart Failure: Cause or Effect?

  • Decompensated Heart Failure (JE Ho, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Venous congestion and endothelial and neurohormonal activation are known to occur in acute decompensated heart failure (ADHF), yet the temporal role of these processes in the pathophysiology of decompensation is not fully understood. Conventional wisdom presumes congestion to be a consequence of worsening cardiovascular function; however, the biomechanically driven effects of venous congestion are biologically plausible contributors to ADHF that remain largely unexplored in vivo. Recent experimental evidence from human models suggests that fluid accumulation and venous congestion are not simply consequences of poor cardiovascular function, but rather are fundamental pro-oxidant, pro-inflammatory, and hemodynamic stimuli that contribute to acute decompensation. The latest advances in the monitoring of volume status using implantable devices allow for the detection of venous congestion before symptoms arise. This may ultimately lead to improved treatment strategies including not only diuretics, but also specific, adjuvant interventions to counteract endothelial and neurohormonal activation during early preclinical decompensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Allen LA, Metra M, Milo-Cotter O, Filippatos G, Reisin LH, Bensimhon DR, et al. Improvements in signs and symptoms during hospitalization for acute heart failure follow different patterns and depend on the measurement scales used: an international, prospective registry to evaluate the evolution of Measures of Disease Severity in Acute Heart Failure (MEASURE-AHF). J Card Fail. 2008;14(9):777–84. doi:10.1016/j.cardfail.2008.07.188.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53(7):582–8. doi:10.1016/j.jacc.2008.08.080.

    Article  PubMed  Google Scholar 

  3. Felker GM, Adams Jr KF, Konstam MA, O’Connor CM, Gheorghiade M. The problem of decompensated heart failure: nomenclature, classification, and risk stratification. Am Heart J. 2003;145(2 Suppl):S18–25. doi:10.1067/mhj.2003.150.

    Article  PubMed  Google Scholar 

  4. Fonarow GC, Abraham WT, Albert NM, Gattis Stough W, Gheorghiade M, Greenberg BH, et al. Influence of a performance-improvement initiative on quality of care for patients hospitalized with heart failure: results of the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Arch Intern Med. 2007;167(14):1493–502. doi:10.1001/archinte.167.14.1493.

    Article  PubMed  Google Scholar 

  5. Fonarow GC, Heywood JT, Heidenreich PA, Lopatin M, Yancy CW. Temporal trends in clinical characteristics, treatments, and outcomes for heart failure hospitalizations, 2002 to 2004: findings from Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2007;153(6):1021–8. doi:10.1016/j.ahj.2007.03.012.

    Article  PubMed  Google Scholar 

  6. Gheorghiade M, Filippatos G, De Luca L, Burnett J. Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. Am J Med. 2006;119(12 Suppl 1):S3–10. doi:10.1016/j.amjmed.2006.09.011.

    Article  PubMed  Google Scholar 

  7. Gheorghiade M, Gattis WA, O’Connor CM, Adams Jr KF, Elkayam U, Barbagelata A, et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA. 2004;291(16):1963–71. doi:10.1001/jama.291.16.1963.

    Article  CAS  PubMed  Google Scholar 

  8. Gheorghiade M, Zannad F, Sopko G, Klein L, Pina IL, Konstam MA, et al. Acute heart failure syndromes: current state and framework for future research. Circulation. 2005;112(25):3958–68. doi:10.1161/CIRCULATIONAHA.105.590091.

    Article  PubMed  Google Scholar 

  9. Lucas C, Johnson W, Hamilton MA, Fonarow GC, Woo MA, Flavell CM, et al. Freedom from congestion predicts good survival despite previous class IV symptoms of heart failure. Am Heart J. 2000;140(6):840–7. doi:10.1067/mhj.2000.110933.

    Article  CAS  PubMed  Google Scholar 

  10. Cotter G, Metra M, Milo-Cotter O, Dittrich HC, Gheorghiade M. Fluid overload in acute heart failure—re-distribution and other mechanisms beyond fluid accumulation. Eur J Heart Fail. 2008;10(2):165–9. doi:10.1016/j.ejheart.2008.01.007.

    Article  PubMed  Google Scholar 

  11. Dorhout Mees EJ. Diastolic heart failure: a confusing concept. Heart Fail Rev. 2013;18(4):503–9. doi:10.1007/s10741-012-9344-9.

    Article  PubMed  Google Scholar 

  12. Felker GM, Cotter G. Unraveling the pathophysiology of acute heart failure: an inflammatory proposal. Am Heart J. 2006;151(4):765–7. doi:10.1016/j.ahj.2005.07.004.

    Article  PubMed  Google Scholar 

  13. Yu CM, Wang L, Chau E, Chan RH, Kong SL, Tang MO, et al. Intrathoracic impedance monitoring in patients with heart failure: correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation. 2005;112(6):841–8. doi:10.1161/CIRCULATIONAHA.104.492207.

    Article  PubMed  Google Scholar 

  14. Tsutamoto T, Hisanaga T, Fukai D, Wada A, Maeda Y, Maeda K, et al. Prognostic value of plasma soluble intercellular adhesion molecule-1 and endothelin-1 concentration in patients with chronic congestive heart failure. Am J Cardiol. 1995;76(11):803–8.

    Article  CAS  PubMed  Google Scholar 

  15. Andreassen AK, Nordoy I, Simonsen S, Ueland T, Muller F, Froland SS, et al. Levels of circulating adhesion molecules in congestive heart failure and after heart transplantation. Am J Cardiol. 1998;81(5):604–8.

    Article  CAS  PubMed  Google Scholar 

  16. Klein RM, Breuer R, Mundhenke M, Schwartzkopff B, Strauer BE. Circulating adhesion molecules (cICAM-1, lcVCAM-1) in patients with suspected inflammatory heart muscle disease. Z Kardiol. 1998;87(2):84–93.

    Article  CAS  PubMed  Google Scholar 

  17. Yin WH, Chen JW, Jen HL, Chiang MC, Huang WP, Feng AN, et al. The prognostic value of circulating soluble cell adhesion molecules in patients with chronic congestive heart failure. Eur J Heart Fail. 2003;5(4):507–16.

    Article  CAS  PubMed  Google Scholar 

  18. Bonomini M, Reale M, Santarelli P, Stuard S, Settefrati N, Albertazzi A. Serum levels of soluble adhesion molecules in chronic renal failure and dialysis patients. Nephron. 1998;79(4):399–407.

    Article  CAS  PubMed  Google Scholar 

  19. Munger MA, Johnson B, Amber IJ, Callahan KS, Gilbert EM. Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1996;77(9):723–7.

    Article  CAS  PubMed  Google Scholar 

  20. Testa M, Yeh M, Lee P, Fanelli R, Loperfido F, Berman JW, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol. 1996;28(4):964–71.

    Article  CAS  PubMed  Google Scholar 

  21. Packer M. Is tumor necrosis factor an important neurohormonal mechanism in chronic heart failure? Circulation. 1995;92(6):1379–82.

    Article  CAS  PubMed  Google Scholar 

  22. Carlstedt F, Lind L, Lindahl B. Proinflammatory cytokines, measured in a mixed population on arrival in the emergency department, are related to mortality and severity of disease. J Intern Med. 1997;242(5):361–5.

    Article  CAS  PubMed  Google Scholar 

  23. Matsumoto M, Tsujino T, Lee-Kawabata M, Naito Y, Sakoda T, Ohyanagi M, et al. Serum interleukin-6 and C-reactive protein are markedly elevated in acute decompensated heart failure patients with left ventricular systolic dysfunction. Cytokine. 2010;49(3):264–8. doi:10.1016/j.cyto.2009.11.006.

    Article  CAS  PubMed  Google Scholar 

  24. Barreto DV, Barreto FC, Liabeuf S, Temmar M, Lemke HD, Tribouilloy C, et al. Plasma interleukin-6 is independently associated with mortality in both hemodialysis and pre-dialysis patients with chronic kidney disease. Kidney Int. 2010;77(6):550–6. doi:10.1038/ki.2009.503.

    Article  CAS  PubMed  Google Scholar 

  25. Descamps-Latscha B, Herbelin A, Nguyen AT, Roux-Lombard P, Zingraff J, Moynot A, et al. Balance between IL-1 beta, TNF-alpha, and their specific inhibitors in chronic renal failure and maintenance dialysis. Relationships with activation markers of T cells, B cells, and monocytes. J Immunol. 1995;154(2):882–92.

    CAS  PubMed  Google Scholar 

  26. Francis SE, Holden H, Holt CM, Duff GW. Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy. J Mol Cell Cardiol. 1998;30(2):215–23. doi:10.1006/jmcc.1997.0592.

    Article  CAS  PubMed  Google Scholar 

  27. Sharma A, Hermann DD, Mehta RL. Clinical benefit and approach of ultrafiltration in acute heart failure. Cardiology. 2001;96(3–4):144–54.

    Article  CAS  PubMed  Google Scholar 

  28. Rodeheffer RJ, Lerman A, Heublein DM, Burnett Jr JC. Increased plasma concentrations of endothelin in congestive heart failure in humans. Mayo Clin Proc. 1992;67(8):719–24.

    Article  CAS  PubMed  Google Scholar 

  29. Cottone S, Mule G, Guarneri M, Palermo A, Lorito MC, Riccobene R, et al. Endothelin-1 and F2-isoprostane relate to and predict renal dysfunction in hypertensive patients. Nephrol Dial Transplant. 2009;24(2):497–503. doi:10.1093/ndt/gfn489.

    Article  CAS  PubMed  Google Scholar 

  30. Dzau VJ, Colucci WS, Hollenberg NK, Williams GH. Relation of the renin-angiotensin-aldosterone system to clinical state in congestive heart failure. Circulation. 1981;63(3):645–51.

    Article  CAS  PubMed  Google Scholar 

  31. Lauten A, Ferrari M, Goebel B, Rademacher W, Schumm J, Uth O, et al. Microvascular tissue perfusion is impaired in acutely decompensated heart failure and improves following standard treatment. Eur J Heart Fail. 2011;13(7):711–7. doi:10.1093/eurjhf/hfr043.

    Article  CAS  PubMed  Google Scholar 

  32. Paton AM, Lever AF, Oliver NW, Medina A, Briggs JD, Morton JJ, et al. Plasma angiotensin II, renin, renin-substrate and aldosterone concentrations in acute renal failure in man. Clin Nephrol. 1975;3(1):18–23.

    CAS  PubMed  Google Scholar 

  33. Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, Liang CS, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation. 1990;82(5):1724–9.

    Article  CAS  PubMed  Google Scholar 

  34. Milo O, Cotter G, Kaluski E, Brill A, Blatt A, Krakover R, et al. Comparison of inflammatory and neurohormonal activation in cardiogenic pulmonary edema secondary to ischemic versus nonischemic causes. Am J Cardiol. 2003;92(2):222–6.

    Article  CAS  PubMed  Google Scholar 

  35. White M, Ducharme A, Ibrahim R, Whittom L, Lavoie J, Guertin MC, et al. Increased systemic inflammation and oxidative stress in patients with worsening congestive heart failure: improvement after short-term inotropic support. Clin Sci (Lond). 2006;110(4):483–9. doi:10.1042/CS20050317.

    Article  CAS  Google Scholar 

  36. Gutierrez E, Flammer AJ, Lerman LO, Elizaga J, Lerman A, Fernandez-Aviles F. Endothelial dysfunction over the course of coronary artery disease. Eur Heart J. 2013;34(41):3175–81. doi:10.1093/eurheartj/eht351.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60(16):1455–69. doi:10.1016/j.jacc.2011.11.082.

    Article  CAS  PubMed  Google Scholar 

  38. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–69. doi:10.7150/ijbs.7502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Zhou J, Li YS, Chien S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol. 2014;34(10):2191–8. doi:10.1161/ATVBAHA.114.303422.

    Article  CAS  PubMed  Google Scholar 

  40. Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol. 2008;93(1):141–7. doi:10.1113/expphysiol.2007.038588.

    Article  CAS  PubMed  Google Scholar 

  41. Cannon 3rd RO. Role of nitric oxide in cardiovascular disease: focus on the endothelium. Clin Chem. 1998;44(8 Pt 2):1809–19.

    CAS  PubMed  Google Scholar 

  42. Drexler H. Nitric oxide synthases in the failing human heart: a doubled-edged sword? Circulation. 1999;99(23):2972–5.

    Article  CAS  PubMed  Google Scholar 

  43. Starling RC. Inducible nitric oxide synthase in severe human heart failure: impact of mechanical unloading. J Am Coll Cardiol. 2005;45(9):1425–7. doi:10.1016/j.jacc.2005.02.021.

    Article  PubMed  Google Scholar 

  44. Boo YC. Shear stress stimulates phosphorylation of protein kinase A substrate proteins including endothelial nitric oxide synthase in endothelial cells. Exp Mol Med. 2006;38(4):453. doi:10.1038/emm.2006.53.

    Article  CAS  PubMed  Google Scholar 

  45. Jin ZG, Ueba H, Tanimoto T, Lungu AO, Frame MD, Berk BC. Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res. 2003;93(4):354–63. doi:10.1161/01.RES.0000089257.94002.96.

    Article  CAS  PubMed  Google Scholar 

  46. Hsieh HJ, Liu CA, Huang B, Tseng AH, Wang DL. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci. 2014;21:3. doi:10.1186/1423-0127-21-3.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Hasdai D, Holmes Jr DR, Garratt KN, Edwards WD, Lerman A. Mechanical pressure and stretch release endothelin-1 from human atherosclerotic coronary arteries in vivo. Circulation. 1997;95(2):357–62.

    Article  CAS  PubMed  Google Scholar 

  48. Delli Gatti C, Osto E, Kouroedov A, Eto M, Shaw S, Volpe M, et al. Pulsatile stretch induces release of angiotensin II and oxidative stress in human endothelial cells: effects of ACE inhibition and AT1 receptor antagonism. Clin Exp Hypertens. 2008;30(7):616–27. doi:10.1080/10641960802443183.

    Article  CAS  PubMed  Google Scholar 

  49. Cheng JJ, Wung BS, Chao YJ, Wang DL. Cyclic strain enhances adhesion of monocytes to endothelial cells by increasing intercellular adhesion molecule-1 expression. Hypertension. 1996;28(3):386–91.

    Article  CAS  PubMed  Google Scholar 

  50. Kawai M, Naruse K, Komatsu S, Kobayashi S, Nagino M, Nimura Y, et al. Mechanical stress-dependent secretion of interleukin 6 by endothelial cells after portal vein embolization: clinical and experimental studies. J Hepatol. 2002;37(2):240–6.

    Article  CAS  PubMed  Google Scholar 

  51. Wang BW, Chang H, Lin S, Kuan P, Shyu KG. Induction of matrix metalloproteinases-14 and -2 by cyclical mechanical stretch is mediated by tumor necrosis factor-alpha in cultured human umbilical vein endothelial cells. Cardiovasc Res. 2003;59(2):460–9.

    Article  CAS  PubMed  Google Scholar 

  52. Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6(1):16–26. doi:10.1038/ncpcardio1397.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Canty Jr TG, Boyle Jr EM, Farr A, Morgan EN, Verrier ED, Pohlman TH. Oxidative stress induces NF-kappaB nuclear translocation without degradation of IkappaBalpha. Circulation. 1999;100(19 Suppl):II361–4.

    PubMed  Google Scholar 

  54. Boyle Jr EM, Canty Jr TG, Morgan EN, Yun W, Pohlman TH, Verrier ED. Treating myocardial ischemia-reperfusion injury by targeting endothelial cell transcription. Ann Thorac Surg. 1999;68(5):1949–53.

    Article  PubMed  Google Scholar 

  55. Hung TH, Charnock-Jones DS, Skepper JN, Burton GJ. Secretion of tumor necrosis factor-alpha from human placental tissues induced by hypoxia-reoxygenation causes endothelial cell activation in vitro: a potential mediator of the inflammatory response in preeclampsia. Am J Pathol. 2004;164(3):1049–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Sorescu GP, Song H, Tressel SL, Hwang J, Dikalov S, Smith DA, et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ Res. 2004;95(8):773–9. doi:10.1161/01.RES.0000145728.22878.45.

    Article  CAS  PubMed  Google Scholar 

  57. Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34(12):1508–12.

    Article  CAS  PubMed  Google Scholar 

  58. Onat D, Jelic S, Schmidt AM, Pile-Spellman J, Homma S, Padeletti M, et al. Vascular endothelial sampling and analysis of gene transcripts: a new quantitative approach to monitor vascular inflammation. J Appl Physiol. 2007;103(5):1873–8. doi:10.1152/japplphysiol.00367.2007.

    Article  CAS  PubMed  Google Scholar 

  59. Colombo PC, Banchs JE, Celaj S, Talreja A, Lachmann J, Malla S, et al. Endothelial cell activation in patients with decompensated heart failure. Circulation. 2005;111(1):58–62. doi:10.1161/01.CIR.0000151611.89232.3B.

    Article  CAS  PubMed  Google Scholar 

  60. Colombo PC, Rastogi S, Onat D, Zaca V, Gupta RC, Jorde UP, et al. Activation of endothelial cells in conduit veins of dogs with heart failure and veins of normal dogs after vascular stretch by acute volume loading. J Card Fail. 2009;15(5):457–63. doi:10.1016/j.cardfail.2008.12.006.

    Article  CAS  PubMed  Google Scholar 

  61. Colombo PC, Onat D, Harxhi A, Demmer RT, Hayashi Y, Jelic S, et al. Peripheral venous congestion causes inflammation, neurohormonal, and endothelial cell activation. Eur Heart J. 2014;35(7):448–54. doi:10.1093/eurheartj/eht456. This recent article provides mechanistic in vivo evidence for a link between peripheral venous congestion and activation of the inflammatory/oxidative program within endothelial cells of humans.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Colombo PC, Onat D, Harxhi A, Hayashi Y, Wong KY, Uriel N, et al. Acute venous congestion enhances vasoconstriction, inflammation, endothelial activation and oxidative stress in compensated ambulatory patients with systolic heart failure on an optimized medical regimen. Circulation (AHA abstract). 2014.

  63. Hawk C, Hayashu Y, Kin J, Chudasama N, Ramnauth DS, Wong KY, et al. Peripheral venous congestion causes time- and dose-dependent release of endothelin-1 in humans. Circulation (AHA abstract). 2014.

  64. Cui J, McQuillan P, Moradkhan R, Pagana C, Sinoway LI. Sympathetic responses during saline infusion into the veins of an occluded limb. J Physiol. 2009;587(Pt 14):3619–28. doi:10.1113/jphysiol.2009.173237. This important article demonstrates that peripheral venous congestion is sufficient to evoke systemic sympathetic activation.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Cui J, McQuillan PM, Blaha C, Kunselman AR, Sinoway LI. Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans. Am J Physiol Heart Circ Physiol. 2012;303(4):H457–63. doi:10.1152/ajpheart.00236.2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Cui J, Leuenberger UA, Gao Z, Sinoway LI. Sympathetic and cardiovascular responses to venous distension in an occluded limb. Am J Physiol Regul Integr Comp Physiol. 2011;301(6):R1831–7. doi:10.1152/ajpregu.00170.2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Cui J, Gao Z, Blaha C, Herr MD, Mast J, Sinoway LI. Distension of central great vein decreases sympathetic outflow in humans. Am J Physiol Heart Circ Physiol. 2013;305(3):H378–85. doi:10.1152/ajpheart.00019.2013. This important study demonstrated that central saline infusion leads to activation of the sympathetic response, increase in blood pressure and decrease in MSNA levels.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Mann DL. Mechanisms and models in heart failure: a combinatorial approach. Circulation. 1999;100(9):999–1008.

    Article  CAS  PubMed  Google Scholar 

  69. Masoumi A, Ortiz F, Radhakrishnan J, Schrier RW, Colombo PC. Mineralocorticoid receptor antagonists as diuretics: can congestive heart failure learn from liver failure? Heart Fail Rev. 2014. doi:10.1007/s10741-014-9467-2.

    Google Scholar 

  70. Vlachopoulos C, Dima I, Aznaouridis K, Vasiliadou C, Ioakeimidis N, Aggeli C, et al. Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation. 2005;112(14):2193–200. doi:10.1161/CIRCULATIONAHA.105.535435.

    Article  PubMed  Google Scholar 

  71. Chen X, Rahman MA, Floras JS. Effects of forearm venous occlusion on peroneal muscle sympathetic nerve activity in healthy subjects. Am J Cardiol. 1995;76(3):212–4.

    Article  CAS  PubMed  Google Scholar 

  72. Colombo PC, Onat D, Sabbah HN. Acute heart failure as “acute endothelitis”—interaction of fluid overload and endothelial dysfunction. Eur J Heart Fail. 2008;10(2):170–5. doi:10.1016/j.ejheart.2007.12.007.

    Article  PubMed  Google Scholar 

  73. Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–66. doi:10.1016/S0140-6736(11)60101-3. This landmark study introduces the advantages of long term invasive hemodynamic monitoring in heart failure.

    Article  PubMed  Google Scholar 

  74. Adamson PB, Abraham WT, Bourge RC, Costanzo MR, Hasan A, Yadav C, et al. Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circ Heart Fail. 2014;7(6):935–44. doi:10.1161/CIRCHEARTFAILURE.113.001229. This recent article demonstrates the successful use of invasive hemodynamic monitoring for the long term management of heart failure in order to prevent heart failure hospitalizations.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the A. L. Mailman Family Foundation, NIH Grant Number HL092144 and NIH Grant Number DE018739.

Compliance with Ethics Guidelines

Conflict of Interest

Paolo C. Colombo, Amanda C. Doran, Duygu Onat, Ka Yuk Wong, Myra Ahmad, Hani N. Sabbah, and Ryan T. Demmer declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo C. Colombo.

Additional information

This article is part of the Topical Collection on Decompensated Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, P.C., Doran, A.C., Onat, D. et al. Venous Congestion, Endothelial and Neurohormonal Activation in Acute Decompensated Heart Failure: Cause or Effect?. Curr Heart Fail Rep 12, 215–222 (2015). https://doi.org/10.1007/s11897-015-0254-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-015-0254-8

Keywords

Navigation