Skip to main content

Advertisement

Log in

Novel Renal Biomarkers to Assess Cardiorenal Syndrome

  • Biomarkers of Heart Failure (WHW Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Renal dysfunction (RD) in heart failure portends adverse outcomes and often limits aggressive medical and decongestive therapies. Despite the high prevalence in this population, not all forms of RD are prognostically or mechanistically equivalent: RD can result from irreversible nephron loss secondary to diabetic or hypertensive kidney disease or it can develop secondary to heart failure (HF) itself, i.e., the cardiorenal syndrome. Furthermore, filtration is only one aspect of renal performance such that significant renal impairment secondary to cardiorenal syndrome can exist despite a normal glomerular filtration rate. Renal biomarkers have the potential to inform some of the intricacies involved in accurately assessing cardiorenal interactions. This article discusses novel biomarkers for cardiorenal syndrome and their utility in the prognosis, diagnosis, and targeted treatment of heart failure-induced RD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:• Of importance, •• Of major importance

  1. Cardio-renal connections in heart failure and cardiovascular disease, National Heart-Lung And Blood Institute Working Group report. 2004.

  2. Braunwald E, Bonow RO. Braunwald’s heart disease: a textbook of cardiovascular medicine. 9th ed. Philadelphia: Saunders; 2012.

    Google Scholar 

  3. Bock JS, Gottlieb SS. Cardiorenal syndrome: new perspectives. Circulation. 2010;121:2592–600.

    PubMed  Google Scholar 

  4. Hillege HL, Girbes ARJ, de Kam PJ, Boomsma F, de Zeeuw D, Charlesworth A, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102:203–10.

    PubMed  CAS  Google Scholar 

  5. Testani JM, Coca SG, Shannon RP, Kimmel SE, Cappola TP. Influence of renal dysfunction phenotype on mortality in the setting of cardiac dysfunction: analysis of three randomized controlled trials. Eur J Heart Fail. 2011;13:1224–30.

    PubMed Central  PubMed  Google Scholar 

  6. Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J, et al. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13:422–30.

    PubMed  Google Scholar 

  7. Ronco C, Cicoira M, McCullough PA. Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol. 2012;60:1031–42.

    PubMed  Google Scholar 

  8. Testani JM, Kimmel SE, Dries DL, Coca SG. Prognostic importance of early worsening renal function after initiation of angiotensin-converting enzyme inhibitor therapy in patients with cardiac dysfunction. Circ Heart Fail. 2011;4:685–91.

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122:265–72.

    PubMed Central  PubMed  Google Scholar 

  10. Testani JM, Brisco MA, Han G, Laur O, Kula AJ, Cheng SJ, et al. Influence of age-related versus non-age-related renal dysfunction on survival in patients with left ventricular dysfunction. Am J Cardiol. 2014;113:127–31.

    PubMed  Google Scholar 

  11. Fonarow GC, Heywood JT. The confounding issue of comorbid renal insufficiency. Am J Med. 2006;119:S17–25.

    PubMed  Google Scholar 

  12. Chen HH, Anstrom KJ, Givertz MM, Stevenson LW, Semigran MJ, Goldsmith SR, et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA: J Am Med Assoc. 2013;310:2533–43.

    CAS  Google Scholar 

  13. Massie BM, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med. 2010;363:1419–28.

    PubMed  Google Scholar 

  14. O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32–43.

    PubMed  Google Scholar 

  15. Gheorghiade M, Konstam MA, Burnett Jr JC, Grinfeld L, Maggioni AP, Swedberg K, et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST Clinical Status Trials. JAMA: J Am Med Assoc. 2007;297:1332–43.

    CAS  Google Scholar 

  16. Bart BA, Goldsmith SR, Lee KL, Givertz MM, O’Connor CM, Bull DA, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367:2296–304.

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Smilde TD, van Veldhuisen DJ, Navis G, Voors AA, Hillege HL. Drawbacks and prognostic value of formulas estimating renal function in patients with chronic heart failure and systolic dysfunction. Circulation. 2006;114:1572–80.

    PubMed  Google Scholar 

  18. Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65:1416–21.

    PubMed  CAS  Google Scholar 

  19. Dupont M, Shrestha K, Singh D, Finucan M, Tang WHW. Lack of concordance in defining worsening renal function by rise in creatinine vs rise in cystatin C. Congest Heart Fail (Greenwich, Conn). 2013;19:E17–21.

    Google Scholar 

  20. Shlipak MG, Matsushita K, Ärnlöv J, Inker LA, Katz R, Polkinghorne KR, et al. Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med. 2013;369:932–43. This is a meta-analysis of over 90,000 patients illustrating that using cystatin C to estimate renal function strengthens the association between renal dysfunction and mortality.

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Damman K, van der Harst P, Smilde TDJ, Voors AA, Navis G, van Veldhuisen DJ, et al. Use of cystatin C levels in estimating renal function and prognosis in patients with chronic systolic heart failure. Heart. 2012;98:319–24.

    PubMed  CAS  Google Scholar 

  22. Zamora E, Lupón J, Vila J, Urrutia A, de Antonio M, Sanz H, et al. Estimated glomerular filtration rate and prognosis in heart failure: value of the Modification of Diet in Renal Disease Study-4, chronic kidney disease epidemiology collaboration, and Cockroft-Gault formulas. J Am Coll Cardiol. 2012;59:1709–15.

    PubMed  Google Scholar 

  23. Laterza OF, Price CP, Scott MG. Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem. 2002;48:699–707.

    PubMed  CAS  Google Scholar 

  24. Shlipak MG, Sarnak MJ, Katz R, Fried LF, Seliger SL, Newman AB, et al. Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med. 2005;352:2049–60.

    PubMed  CAS  Google Scholar 

  25. Shlipak MG, Katz R, Fried LF, Jenny NS, Stehman-Breen CO, Newman AB, et al. Cystatin-C and mortality in elderly persons with heart failure. J Am Coll Cardiol. 2005;45:268–71.

    PubMed  CAS  Google Scholar 

  26. Tang WHW, Van Lente F, Shrestha K, Troughton RW, Francis GS, Tong W, et al. Impact of myocardial function on cystatin C measurements in chronic systolic heart failure. J Card Fail. 2008;14:394–9.

    PubMed  CAS  Google Scholar 

  27. Zamora E, Lupón J, de Antonio M, Vila J, Galán A, Gastelurrutia P, et al. Limited value of cystatin-C over estimated glomerular filtration rate for heart failure risk stratification. PLoS ONE. 2012;7:e51234.

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Dupont M, Wu Y, Hazen SL, Tang WHW. Cystatin C identifies patients with stable chronic heart failure at increased risk for adverse cardiovascular events. Circ: Heart Fail. 2012;5:602–9. This is a study in chronic heart failure patients showing cystatin C improves estimation of risk, particularly in those with normal renal function.

    CAS  Google Scholar 

  29. Lassus J, Harjola V-P, Sund R, Siirilä-Waris K, Melin J, Peuhkurinen K, et al. Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. Eur Heart J. 2007;28:1841–7.

    PubMed  CAS  Google Scholar 

  30. Arimoto T, Takeishi Y, Niizeki T, Takabatake N, Okuyama H, Fukui A, et al. Cystatin C, a novel measure of renal function, is an independent predictor of cardiac events in patients with heart failure. J Card Fail. 2005;11:595–601.

    PubMed  CAS  Google Scholar 

  31. Naruse H, Ishii J, Kawai T, Hattori K, Ishikawa M, Okumura M, et al. Cystatin C in acute heart failure without advanced renal impairment. Am J Med. 2009;122:566–73.

    PubMed  CAS  Google Scholar 

  32. Manzano-Fernández S, Boronat-Garcia M, Albaladejo-Otón MD, Pastor P, Garrido IP, Pastor-Pérez FJ, et al. Complementary prognostic value of cystatin C, N-terminal pro-B-type natriuretic peptide and cardiac troponin T in patients with acute heart failure. Am J Cardiol. 2009;103:1753–9.

    PubMed  Google Scholar 

  33. Valente MAE, Hillege HL, Navis G, Voors AA, Dunselman PHJM, van Veldhuisen DJ, et al. The Chronic Kidney Disease Epidemiology Collaboration equation outperforms the Modification of Diet in Renal Disease equation for estimating glomerular filtration rate in chronic systolic heart failure. Eur J Heart Fail. 2014;16:86–94. This study compared the accuracy and prognostic value of estimating equations of glomerular filtration rate in heart failure patients to iothalamate clearance.

    PubMed  CAS  Google Scholar 

  34. Taal MW, Brenner BM, Rector FC. Brenner & Rector’s the kidney. 9th ed. Philadelphia: Elsevier/Saunders; 2012.

    Google Scholar 

  35. Dickson LE, Wagner MC, Sandoval RM, Molitoris BA. The proximal tubule and albuminuria: really! J Am Soc Nephrol. 2014;25:443–53.

    PubMed  CAS  Google Scholar 

  36. Agewall S, Wikstrand J, Ljungman S, Fagerberg B. Usefulness of microalbuminuria in predicting cardiovascular mortality in treated hypertensive men with and without diabetes mellitus. Risk Factor Intervention Study Group. Am J Cardiol. 1997;80:164–9.

    PubMed  CAS  Google Scholar 

  37. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106:1777–82.

    PubMed  CAS  Google Scholar 

  38. Jackson CE, MacDonald MR, Petrie MC, Solomon SD, Pitt B, Latini R, et al. Associations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study. Eur J Heart Fail. 2014;13:746–54. This secondary analysis of the ALOFT trial illustrated that patients with albuminuria without concomitant diabetes had indices consistent with increased venous congestion.

    Google Scholar 

  39. Masson S, Latini R, Milani V, Moretti L, Rossi MG, Carbonieri E, et al. Prevalence and prognostic value of elevated urinary albumin excretion in patients with chronic heart failure: data from the GISSI-Heart Failure trial. Circ Heart Fail. 2010;3:65–72.

    PubMed  CAS  Google Scholar 

  40. van de Wal RMA, Asselbergs FW, Plokker HWT, Smilde TDJ, Lok D, van Veldhuisen DJ, et al. High prevalence of microalbuminuria in chronic heart failure patients. J Card Fail. 2005;11:602–6.

    PubMed  Google Scholar 

  41. Smilde TDJ, Damman K, Harst P, Navis G, Daan Westenbrink B, Voors AA, et al. Differential associations between renal function and “modifiable” risk factors in patients with chronic heart failure. Clin Res Cardiol. 2008;98:121–9.

    PubMed  Google Scholar 

  42. Anand IS, Bishu K, Rector TS, Ishani A, Kuskowski MA, Cohn JN. Proteinuria, chronic kidney disease, and the effect of an angiotensin receptor blocker in addition to an angiotensin-converting enzyme inhibitor in patients with moderate to severe heart failure. Circulation. 2009;120:1577–84.

    PubMed  CAS  Google Scholar 

  43. Koyama S, Sato Y, Tanada Y, Fujiwara H, Takatsu Y. Early evolution and correlates of urine albumin excretion in patients presenting with acutely decompensated heart failure. Circ Heart Fail. 2013;6:227–32. This single-center study established a form of albuminuria secondary to heart failure that improves with decongestion, suggesting its high utility as a marker of cardiorenal dysfunction.

    PubMed  CAS  Google Scholar 

  44. Jackson CE, Solomon SD, Gerstein HC, Zetterstrand S, Olofsson B, Michelson EL, et al. Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet. 2009;374:543–50.

    PubMed  CAS  Google Scholar 

  45. Testani JM, McCauley BD, Kimmel SE, Shannon RP. Characteristics of patients with improvement or worsening in renal function during treatment of acute decompensated heart failure. Am J Cardiol. 2010;106:1763–9.

    PubMed Central  PubMed  Google Scholar 

  46. Testani JM, Brisco MA, Chen J, McCauley BD, Parikh CR, Tang WH. Timing of hemoconcentration during treatment of acute decompensated heart failure and subsequent survival: importance of sustained decongestion. J Am Coll Cardiol. 2013;62:516–24.

    PubMed Central  PubMed  Google Scholar 

  47. Testani JM, Cappola TP, McCauley BD, Chen J, Shen J, Shannon RP, et al. Impact of worsening renal function during the treatment of decompensated heart failure on changes in renal function during subsequent hospitalization. Am Heart J. 2011;161:944–9.

    PubMed Central  PubMed  Google Scholar 

  48. Testani JM, Coca SG, McCauley BD, Shannon RP, Kimmel SE. Impact of changes in blood pressure during the treatment of acute decompensated heart failure on renal and clinical outcomes. Eur J Heart Fail. 2011;13:877–84.

    PubMed Central  PubMed  Google Scholar 

  49. Charlton JR, Portilla D, Okusa MD. A basic science view of acute kidney injury biomarkers. Nephrol Dial Transplant. 2014;29:1301–11.

    PubMed  Google Scholar 

  50. Shrestha K, Borowski AG, Troughton RW, Klein AL, Tang WHW. Association between systemic neutrophil gelatinase-associated lipocalin and anemia, relative hypochromia, and inflammation in chronic systolic heart failure. Congest Heart Fail (Greenwich, Conn). 2012;18:239–44.

    CAS  Google Scholar 

  51. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8.

    PubMed  CAS  Google Scholar 

  52. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14:2534–43.

    PubMed  CAS  Google Scholar 

  53. Schmidt-Ott KM. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury—where do we stand today? Nephrol Dial Transplant. 2011;26:762–4.

    PubMed  CAS  Google Scholar 

  54. Damman K, van Veldhuisen DJ, Navis G, Voors AA, Hillege HL. Urinary neutrophil gelatinase associated lipocalin (NGAL), a marker of tubular damage, is increased in patients with chronic heart failure. Eur J Heart Fail: J Working Group Heart Fail Eur Soc Cardiol. 2008;10:997–1000.

    CAS  Google Scholar 

  55. van Deursen VM, Damman K, Voors AA, van der Wal MH, Jaarsma T, van Veldhuisen DJ, et al. Prognostic value of plasma neutrophil gelatinase-associated lipocalin for mortality in patients with heart failure. Circ Heart Fail. 2014;7:35–42.

    PubMed  Google Scholar 

  56. Damman K, van Veldhuisen DJ, Navis G, Vaidya VS, Smilde TDJ, Westenbrink BD, et al. Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart. 2010;96:1297–302.

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Jungbauer CG, Birner C, Jung B, Buchner S, Lubnow M, von Bary C, et al. Kidney injury molecule-1 and N-acetyl-β-D-glucosaminidase in chronic heart failure: possible biomarkers of cardiorenal syndrome. Eur J Heart Fail. 2014;13:1104–10.

    Google Scholar 

  58. Shrestha K, Shao Z, Singh D, Dupont M, Tang WHW. Relation of systemic and urinary neutrophil gelatinase-associated lipocalin levels to different aspects of impaired renal function in patients with acute decompensated heart failure. Am J Cardiol. 2012;110:1329–35.

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Shrestha K, Borowski AG, Troughton RW, Thomas JD, Klein AL, Tang WH. Renal dysfunction is a stronger determinant of systemic neutrophil gelatinase-associated lipocalin levels than myocardial dysfunction in systolic heart failure. J Card Fail. 2011;17:472–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Damman K, Masson S, Hillege HL, Maggioni AP, Voors AA, Opasich C, et al. Clinical outcome of renal tubular damage in chronic heart failure. Eur Heart J. 2011;32:2705–12.

    PubMed  CAS  Google Scholar 

  61. Aghel A, Shrestha K, Mullens W, Borowski A, Tang WH. Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J Card Fail. 2010;16:49–54.

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Maisel AS, Mueller C, Fitzgerald R, Brikhan R, Hiestand BC, Iqbal N, et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail. 2011;13:846–51.

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Palazzuoli A, Ruocco G, Beltrami M, Franci B, Pellegrini M, Lucani B, et al. Admission plasma neutrophil gelatinase associated lipocalin (NGAL) predicts worsening renal function during hospitalization and post discharge outcome in patients with acute heart failure. Acute Card Care. 2014;16(3):93–101.

  64. Verbrugge FH, Dupont M, Shao Z, Shrestha K, Singh D, Finucan M, et al. Novel urinary biomarkers in detecting acute kidney injury, persistent renal impairment, and all-cause mortality following decongestive therapy in acute decompensated heart failure. J Card Fail. 2013;19:621–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Alvelos M, Pimentel R, Pinho E, Gomes A, Lourenço P, Teles MJ, et al. Neutrophil gelatinase-associated lipocalin in the diagnosis of type 1 cardio-renal syndrome in the general ward. Clin J Am Soc Nephrol. 2011;6:476–81.

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Macdonald S, Arendts G, Nagree Y, Xu X-F. Neutrophil Gelatinase-Associated Lipocalin (NGAL) predicts renal injury in acute decompensated cardiac failure: a prospective observational study. BMC Cardiovasc Disord. 2012;12:8.

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Mortara A, Bonadies M, Mazzetti S, Fracchioni I, Delfino P, Chioffi M, et al. Neutrophil gelatinase-associated lipocalin predicts worsening of renal function in acute heart failure: methodological and clinical issues. J Cardiovasc Med (Hagerstown, Md). 2013;14:629–34.

    CAS  Google Scholar 

  68. Damman K, Masson S, Hillege HL, Voors AA, van Veldhuisen DJ, Rossignol P, et al. Tubular damage and worsening renal function in chronic heart failure. JACC Heart Failure. 2013;1:417–24. This secondary analysis of the GISSI-HF study suggests renal biomarkers may help predict worsening renal function in heart failure.

    PubMed  Google Scholar 

  69. Dupont M, Shrestha K, Singh D, Awad A, Kovach C, Scarcipino M, et al. Lack of significant renal tubular injury despite acute kidney injury in acute decompensated heart failure. Eur J Heart Fail. 2012;14:597–604. Significant worsening in renal function with diuresis was associated with increases in urinary NGAL but not the magnitude of other forms of kidney injury suggesting different pathophysiology of renal dysfunction in heart failure.

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Testani JM, Tang WH. Biomarkers of acute kidney injury in chronic heart failure: what do the signals mean? JACC Heart Failure. 2013;1:425–6.

    PubMed  Google Scholar 

  71. Waring WS, Moonie A. Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury. Clin Toxicol. 2011;49:720–8.

    CAS  Google Scholar 

  72. Han WK, Wagener G, Zhu Y, Wang S, Lee HT. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4:873–82.

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Liangos O, Perianayagam MC, Vaidya VS, Han WK, Wald R, Tighiouart H, et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol. 2007;18:904–12.

    PubMed  CAS  Google Scholar 

  74. Damman K, Ng Kam Chuen MJ, MacFadyen RJ, Lip GYH, Gaze D, Collinson PO, et al. Volume status and diuretic therapy in systolic heart failure and the detection of early abnormalities in renal and tubular function. J Am Coll Cardiol. 2011;57:2233–41.

    PubMed  Google Scholar 

  75. Bonventre JV, Yang L. Kidney injury molecule-1. Curr Opin Crit Care. 2010;16:556–61.

    PubMed  Google Scholar 

  76. Vaidya VS, Ozer JS, Dieterle F, Collings FB, Ramirez V, Troth S, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol. 2010;28:478–85.

    PubMed Central  PubMed  CAS  Google Scholar 

  77. O’Seaghdha CM, Hwang S-J, Larson MG, Meigs JB, Vasan RS, Fox CS. Analysis of a urinary biomarker panel for incident kidney disease and clinical outcomes. J Am Soc Nephrol. 2013;24:1880–8.

    PubMed Central  PubMed  Google Scholar 

  78. Carlsson AC, Larsson A, Helmersson-Karlqvist J, Lind L, Ingelsson E, Larsson TE, et al. Urinary kidney injury molecule 1 and incidence of heart failure in elderly men. Eur J Heart Fail. 2013;15:441–6.

    PubMed  CAS  Google Scholar 

  79. Mallat Z, Henry P, Fressonnet R, Alouani S, Scoazec A, Beaufils P, et al. Increased plasma concentrations of interleukin-18 in acute coronary syndromes. Heart. 2002;88:467–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70:199–203.

    PubMed  CAS  Google Scholar 

  81. Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis. 2004;43:405–14.

    PubMed  CAS  Google Scholar 

  82. Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58:2301–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Coca SG, Garg AX, Thiessen-Philbrook H, Koyner JL, Patel UD, Krumholz HM, et al. Urinary biomarkers of AKI and mortality 3 years after cardiac surgery. J Am Soc Nephrol. 2014;25:1063–71.

    PubMed  CAS  Google Scholar 

  84. Naito Y, Tsujino T, Fujioka Y, Ohyanagi M, Okamura H, Iwasaki T. Increased circulating interleukin-18 in patients with congestive heart failure. Heart. 2002;88:296–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Driver TH, Katz R, Ix JH, Magnani JW, Peralta CA, Parikh CR, et al. Urinary kidney injury molecule 1 (KIM-1) and interleukin 18 (IL-18) as risk markers for heart failure in older adults: the Health, Aging, and Body Composition (Health ABC) study. Am J Kidney Dis: Off J Nat Kidney Found. 2014;64:49–56.

    CAS  Google Scholar 

  86. Cecil RL, Goldman L, Schafer AI. Goldman’s Cecil medicine. 24th ed. Philadelphia: Elsevier/Saunders/; 2012.

    Google Scholar 

  87. Fonarow GC, Adams KF, Abraham WT, Yancy CW, Boscardin WJ, ADHERE Scientific Advisory Committee, SG, and Investigators. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA: The Journal of the American Medical Association. 2005;293:572–80.

    CAS  Google Scholar 

  88. Fenton RA. Essential role of vasopressin-regulated urea transport processes in the mammalian kidney. Pflugers Arch - Eur J Physiol. 2009;458:169–77.

    CAS  Google Scholar 

  89. Kazory A. Emergence of blood urea nitrogen as a biomarker of neurohormonal activation in heart failure. Am J Cardiol. 2010;106:694–700.

    PubMed  CAS  Google Scholar 

  90. Schrier RW. Blood urea nitrogen and serum creatinine: not married in heart failure. Circ Heart Failure. 2008;1:2–5.

    CAS  Google Scholar 

  91. Lindenfeld J, Schrier RW. Blood urea nitrogen a marker for adverse effects of loop diuretics? J Am Coll Cardiol. 2011;58:383–5.

    PubMed  CAS  Google Scholar 

  92. Lin H-J, Chao C-L, Chien K-L, Ho Y-L, Lee C-M, Lin Y-H, et al. Elevated blood urea nitrogen-to-creatinine ratio increased the risk of hospitalization and all-cause death in patients with chronic heart failure. Clin Res Cardiol. 2009;98:487–92.

    PubMed  CAS  Google Scholar 

  93. Aronson D, Mittleman MA, Burger AJ. Elevated blood urea nitrogen level as a predictor of mortality in patients admitted for decompensated heart failure. Am J Med. 2004;116:466–73.

    PubMed  CAS  Google Scholar 

  94. Brisco MA, Coca SG, Chen J, Owens AT, McCauley BD, Kimmel SE, et al. Blood urea nitrogen/creatinine ratio identifies a high-risk but potentially reversible form of renal dysfunction in patients with decompensated heart failure. Circ Heart Fail. 2013;6:233–9. Suggests that BUN/Cr may be useful in differentiating forms of renal dysfunction in heart failure.

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Testani JM, Khera AV, St John Sutton MG, Keane MG, Wiegers SE, Shannon RP, et al. Effect of right ventricular function and venous congestion on cardio-renal interactions during the treatment of decompensated heart failure. Am J Cardiol. 2010;105:511–6.

    PubMed Central  PubMed  Google Scholar 

  96. Testani JM, McCauley BD, Chen J, Coca SG, Cappola TP, Kimmel SE. Clinical characteristics and outcomes of patients with improvement in renal function during the treatment of decompensated heart failure. J Card Fail. 2011;17:993–1000.

    PubMed Central  PubMed  Google Scholar 

  97. Brater DC, Seiwell R, Anderson S, Burdette A, Dehmer GJ, Chennavasin P. Absorption and disposition of furosemide in congestive heart failure. Kidney Int. 1982;22:171–6.

    PubMed  CAS  Google Scholar 

  98. Brater DC. Update in diuretic therapy: clinical pharmacology. Semin Nephrol. 2011;31:483–94.

    PubMed  CAS  Google Scholar 

  99. Felker GM, Mentz RJ. Diuretics and ultrafiltration in acute decompensated heart failure. J Am Coll Cardiol. 2012;59:2145–53.

    PubMed  CAS  Google Scholar 

  100. Braunwald E. Responsiveness to loop diuretics in heart failure. Eur Heart J. 2014;35:1235–7.

    PubMed  Google Scholar 

  101. Testani JM, Brisco MA, Turner JM, Spatz ES, Bellumkonda L, Parikh CR, et al. Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ Heart Fail. 2014;7:261–70. This is an analysis of two decompensated heart failure cohorts suggesting diuretic efficiency may serve as a metric of diuretic resistance with distinct prognostic information, further identifying cardiorenal dysfunction.

    PubMed  CAS  Google Scholar 

  102. Valente MAE, Voors AA, Damman K, van Veldhuisen DJ, Massie BM, O’Connor CM, et al. Diuretic response in acute heart failure: clinical characteristics and prognostic significance. Eur Heart J. 2014;35:1284–93.

    PubMed  CAS  Google Scholar 

  103. Singh D, Shrestha K, Testani JM, Verbrugge FH, Dupont M, Mullens W, et al. Insufficient natriuretic response to continuous intravenous furosemide is associated with poor long-term outcomes in acute decompensated heart failure. J Card Fail. 2014;20:392–9. This is a single-center study describing the prognostic and potentially therapeutic utility of urine sodium measurements during diuretic treatment.

    PubMed  CAS  Google Scholar 

  104. Mulder H, Schopman Jr W, van der Lely AJ, Schopman Sr W. Acute changes in plasma renin activity, plasma aldosterone concentration and plasma electrolyte concentrations following furosemide administration in patients with congestive heart failure—interrelationships and diuretic response. Horm Metab Res. 1987;19:80–3.

    PubMed  CAS  Google Scholar 

  105. Winton FR. The influence of venous pressure on the isolated mammalian kidney. J Physiol. 1931;72:49–61.

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Damman K, Navis G, Smilde TDJ, Voors AA, van der Bij W, van Veldhuisen DJ, et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail: J Working Group Heart Fail Eur Soc Cardiol. 2007;9:872–8.

    Google Scholar 

  107. Testani JM, Damman K. Venous congestion and renal function in heart failure … it’s complicated. Eur J Heart Fail. 2013;15:599–601.

    PubMed  Google Scholar 

  108. Rothenburger M, Wichter T, Schmid C, Stypmann J, Tjan TD, Berendes E, et al. Aminoterminal pro type B natriuretic peptide as a predictive and prognostic marker in patients with chronic heart failure. J Heart Lung Transplant: Off Publ Int Soc Heart Transplant. 2004;23:1189–97.

    Google Scholar 

  109. Hartmann F, Packer M, Coats AJS, Fowler MB, Krum H, Mohacsi P, et al. Prognostic impact of plasma N-terminal pro-brain natriuretic peptide in severe chronic congestive heart failure: a substudy of the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) trial. Circulation. 2004;110:1780–6.

    PubMed  CAS  Google Scholar 

  110. Bettencourt P, Azevedo A, Pimenta J, Friões F, Ferreira S, Ferreira A. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation. 2004;110:2168–74.

    PubMed  CAS  Google Scholar 

  111. Latini R, Masson S, Wong M, Barlera S, Carretta E, Staszewsky L, et al. Incremental prognostic value of changes in B-type natriuretic peptide in heart failure. Am J Med. 2006;70:e23–30.

    Google Scholar 

  112. van Kimmenade RR, Januzzi J, James L, Ellinor PT, Sharma UC, Bakker JA, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48:1217–24.

    PubMed  Google Scholar 

  113. Sherlock S. The liver in heart failure; relation of anatomical, functional, and circulatory changes. Br Heart J. 1951;13:273–93.

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Giallourakis CC, Rosenberg PM, Friedman LS. The liver in heart failure. Clin Liver Dis. 2002;6:947–67. viii–ix.

    PubMed  Google Scholar 

  115. van Deursen VM, Damman K, Hillege HL, Van Beek AP, Van Veldhuisen DJ, Voors AA. Abnormal liver function in relation to hemodynamic profile in heart failure patients. J Card Fail. 2010;16:84–90.

    PubMed  Google Scholar 

  116. Kim MS, Kato TS, Farr M, Wu C, Givens RC, Collado E, et al. Hepatic dysfunction in ambulatory patients with heart failure: application of the MELD scoring system for outcome prediction. J Am Coll Cardiol. 2013;61:2253–61.

    PubMed Central  PubMed  Google Scholar 

  117. van Deursen VM, Edwards C, Cotter G, Davison BA, Damman K, Teerlink JR, et al. Liver function, in-hospital, and post-discharge clinical outcome in patients with acute heart failure—results from the relaxin for the treatment of patients with acute heart failure study. J Card Fail. 2014;20:407–13. This study examines the association between liver function tests and mortality, rehospitalization and worsening heart failure.

    PubMed  Google Scholar 

  118. Allen LA, Felker GM, Pocock S, McMurray JJV, Pfeffer MA, Swedberg K, et al. Liver function abnormalities and outcome in patients with chronic heart failure: data from the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) program. Eur J Heart Fail: J Working Group Heart Fail Eur Soc Cardiol. 2009;11:170–7.

    Google Scholar 

  119. Brisco MA, McCauley BD, Chen J, Parikh CR, Testani JM. Biochemical evidence of mild hepatic dysfunction identifies decompensated heart failure patients with reversible renal dysfunction. J Card Fail. 2013;19:739–45. This study suggests that markers of hepatic congestion in patients with renal dysfunction may identify patients with heart failure induced renal dysfunction at presentation.

    PubMed  CAS  Google Scholar 

  120. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J of Pathol. 2008;172:288–98.

    CAS  Google Scholar 

  121. Okamura DM, Pasichnyk K, Lopez-Guisa JM, Collins S, Hsu DK, Liu FT, et al. Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am J Physiol Renal Physiol. 2011;300:F245–53.

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JPM, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8.

    PubMed  CAS  Google Scholar 

  123. Gopal DM, Kommineni M, Ayalon N, Koelbl C, Ayalon R, Biolo A, et al. Relationship of plasma galectin-3 to renal function in patients with heart failure: effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc. 2012;1:e000760.

    PubMed Central  PubMed  Google Scholar 

  124. Lok DJA, Meer P, Porte PWB-A, Lipsic E, Wijngaarden J, Hillege HL, et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol. 2010;99:323–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  125. Tang WHW, Shrestha K, Shao Z, Borowski AG, Troughton RW, Thomas JD, et al. Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol. 2011;108:385–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  126. Meijers WC, Januzzi JL, de Filippi C, Adourian AS, Shah SJ, van Veldhuisen DJ, et al. Elevated plasma galectin-3 is associated with near-term rehospitalization in heart failure: a pooled analysis of 3 clinical trials. Am Heart J. 2014;167:853–60. e4.

    PubMed  CAS  Google Scholar 

  127. Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RRJ, Januzzi JL. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail. 2010;12:826–32.

    PubMed Central  PubMed  CAS  Google Scholar 

  128. van der Velde AR, Gullestad L, Ueland T, Aukrust P, Guo Y, Adourian A, et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail. 2013;6:219–26. This analysis of two cohorts revealed that galectin-3 may identify both acute and chronic heart failure patients at risk for mortality.

    PubMed  Google Scholar 

  129. O’Seaghdha CM, Hwang S-J, Ho JE, Vasan RS, Levy D, Fox CS. Elevated galectin-3 precedes the development of CKD. J Am Soc Nephrol. 2013;24:1470–7.

    PubMed Central  PubMed  Google Scholar 

  130. Davidson NC, Barr CS, Struthers AD. C-type natriuretic peptide. An endogenous inhibitor of vascular angiotensin-converting enzyme activity. Circulation. 1996;93:1155–9.

    PubMed  CAS  Google Scholar 

  131. Mattingly MT, Brandt RR, Heublein DM, Wei CM, Nir A, Burnett JC. Presence of C-type natriuretic peptide in human kidney and urine. Kidney Int. 1994;46:744–7.

    PubMed  CAS  Google Scholar 

  132. Del Ry S, Passino C, Maltinti M, Emdin M, Giannessi D. C-type natriuretic peptide plasma levels increase in patients with chronic heart failure as a function of clinical severity. Eur J Heart Fail. 2005;7:1145–8.

    PubMed  Google Scholar 

  133. Del Ry S, Giannessi D, Maltinti M, Prontera C, Iervasi A, Colotti C, et al. Increased levels of C-type natriuretic peptide in patients with idiopathic left ventricular dysfunction. Peptides. 2007;28:1068–73.

    PubMed  Google Scholar 

  134. Wright SP, Prickett TCR, Doughty RN, Frampton C, Gamble GD, Yandle TG, et al. Amino-terminal pro-C-type natriuretic peptide in heart failure. Hypertension. 2004;43:94–100.

    PubMed  CAS  Google Scholar 

  135. Zakeri R, Sangaralingham SJ, Sandberg SM, Heublein DM, Scott CG, Burnett JC. Urinary C-type natriuretic peptide: a new heart failure biomarker. JACC Heart Failure. 2013;1:170–7. This study revealed the potential for urinary CNP as a prognostic biomarker in decompensated heart failure.

    PubMed  Google Scholar 

  136. van Kimmenade RRJ, Januzzi J, James L, Baggish AL, Lainchbury JG, Bayes-Genis A, et al. Amino-terminal pro-brain natriuretic Peptide, renal function, and outcomes in acute heart failure: redefining the cardiorenal interaction? J Am Coll Cardiol. 2006;48:1621–7.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Meredith A. Brisco and Jeffrey M. Testani declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Testani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brisco, M.A., Testani, J.M. Novel Renal Biomarkers to Assess Cardiorenal Syndrome. Curr Heart Fail Rep 11, 485–499 (2014). https://doi.org/10.1007/s11897-014-0226-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-014-0226-4

Keywords

Navigation