Skip to main content
Log in

Intestinal Transplant Inflammation: the Third Inflammatory Bowel Disease

  • Small Intestine (D Sachar, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Intestinal transplantation is the most immunologically complex of all abdominal organ transplants. Understanding the role both humoral and innate and adaptive cellular immunity play in intestinal transplantation is critical to improving outcomes and increasing indications for patients suffering from intestinal failure. Recent findings highlighting the impact of donor-specific antibodies on intestinal allografts, the role of NOD2 as a key regulator of intestinal immunity, the protective effects of innate lymphoid cells, and the role of Th17 in acute cellular rejection are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Fishbein TM. Intestinal transplantation. N Engl J Med. 2009;361(10):998–1008.

    Article  CAS  PubMed  Google Scholar 

  2. Kaneku H, Wozniak LJ. Donor-specific human leukocyte antigen antibodies in intestinal transplantation. Curr Opin Organ Transplant. 2014;19(3):261–6.

    Article  CAS  PubMed  Google Scholar 

  3. Campbell P. Clinical relevance of human leukocyte antigen antibodies in liver, heart, lung and intestine transplantation. Curr Opin Organ Transplant. 2013;18(4):463–9.

    Article  CAS  PubMed  Google Scholar 

  4. Amore A. Antibody-mediated rejection. Curr Opin Organ Transplant. 2015;20(5):536–42.

    Article  CAS  PubMed  Google Scholar 

  5. Bachelet T, Couzi L, Lepreux S, et al. Kidney intragraft donor-specific antibodies as determinant of antibody-mediated lesions and poor graft outcome. Am J Transplant. 2013;13(11):2855–64.

    Article  CAS  PubMed  Google Scholar 

  6. Einecke G, Sis B, Reeve J, et al. Antibody-mediated microcirculation injury is the major cause of late kidney transplant failure. Am J Transplant. 2009;9(11):2520–31.

    Article  CAS  PubMed  Google Scholar 

  7. Haas M. The Revised. Banff classification for antibody-mediated rejection of renal allografts: update, difficulties, and future considerations. Am J Transplant. 2013; 2015 .

  8. Tsai HL, Island ER, Chang JW, et al. Association between donor-specific antibodies and acute rejection and resolution in small bowel and multivisceral transplantation. Transplantation. 2011;92(6):709–15.

    Article  CAS  PubMed  Google Scholar 

  9. Farmer DG, Venick RS, Colangelo J, et al. Pretransplant predictors of survival after intestinal transplantation: analysis of a single-center experience of more than 100 transplants. Transplantation. 2010;90(12):1574–80.

    Article  PubMed  Google Scholar 

  10. Gerlach UA, Lachmann N, Sawitzki B, et al. Clinical relevance of the de novo production of anti-HLA antibodies following intestinal and multivisceral transplantation. Transpl Int. 2014;27(3):280–9. This article highlights the significance of de novo donor-specific antibodies for intestinal transplant recipients.

    Article  CAS  PubMed  Google Scholar 

  11. Abu-Elmagd KM, Wu G, Costa G, et al. Preformed and de novo donor-specific antibodies in visceral transplantation: long-term outcome with special reference to the liver. Am J Transplant. 2012;12(11):3047–60. This article shows the importance of preformed and de novo donor-specific antibodies for the outcome after intestinal and multivisceral transplantation.

    Article  CAS  PubMed  Google Scholar 

  12. Kubal C, Mangus R, Saxena R, et al. Prospective monitoring of donor-specific anti-HLA antibodies after intestine/multivisceral transplantation: significance of de novo antibodies. Transplantation. 2015;99(8):e49–56.

    Article  CAS  PubMed  Google Scholar 

  13. Hawksworth JS, Rosen-Bronson S, Island E, et al. Successful isolated intestinal transplantation in sensitized recipients with the use of virtual crossmatching. Am J Transplant. 2012;12 Suppl 4:S33–42.

    Article  PubMed  Google Scholar 

  14. Gerlach UA, Schoenemann C, Lachmann N, et al. Salvage therapy for refractory rejection and persistence of donor-specific antibodies after intestinal transplantation using the proteasome inhibitor bortezomib. Transpl Int. 2011;24(5):e43–5.

    Article  PubMed  Google Scholar 

  15. Island ER, Gonzalez-Pinto IM, Tsai HL et al. Successful treatment with bortezomib of a refractory humoral rejection of the intestine after multivisceral transplantation. Clin Transpl. 2009;465–9.

  16. Fan J, Tryphonopoulos P, Tekin A, et al. Eculizumab salvage therapy for antibody-mediated rejection in a desensitization-resistant intestinal re-transplant patient. Am J Transplant. 2015;15(7):1995–2000.

    Article  CAS  PubMed  Google Scholar 

  17. Cucchetti A, Siniscalchi A, Bagni A, et al. Bacterial translocation in adult small bowel transplantation. Transplant Proc. 2009;41:1325–30.

    Article  CAS  PubMed  Google Scholar 

  18. Matsumoto C, Zasloff M, Fishbein TM. Chronic mucosal inflammation/inflammatory bowel disease-like inflammation after intestinal transplantation: where are we now? Curr Opin Organ Transplant. 2014;19:276–80.

    Article  CAS  PubMed  Google Scholar 

  19. Boyle JP, Parkhouse R, Monie TP. Insights into the molecular basis of the NOD2 signaling pathway. Open Biol. 2014;4(12)

  20. Fishbein T, Novitskiy G, Mishra L, et al. NOD2-expressing bone marrow-derived cells appear to regulate epithelial innate immunity of the transplanted human small intestine. Gut. 2008;57(3):323–30.

    Article  CAS  PubMed  Google Scholar 

  21. Ningappa M, Higgs BW, Weeks DE, et al. NOD2 gene polymorphism rs2066844 associates with need for combined liver-intestine transplantation in children with short-gut syndrome. Am J Gastroenterol. 2011;106(1):157–65.

    Article  PubMed  Google Scholar 

  22. Guerra JF, Zasloff M, Lough D, et al. Nucleotide oligomerization domain 2 polymorphisms in patients with intestinal failure. J Gastroenterol Hepatol. 2013;28(2):309–13.

    Article  CAS  PubMed  Google Scholar 

  23. Schaffler H, Schneider N, Hsieh CJ, et al. NOD2 mutations are associated with the development of intestinal failure in the absence of Crohn’s disease. Clin Nutr. 2013;32(6):1029–35.

    Article  PubMed  Google Scholar 

  24. Lough D, Abdo J, Guerra-Castro JF, et al. Abnormal CX3CR1(+) lamina propria myeloid cells from intestinal transplant recipients with NOD2 mutations. Am J Transplant. 2012;12(4):992–1003. This paper demonstrates the importance of the NOD2 receptor and a subset of myeloid-derived lamina propria cells in controlling antimicrobial defense in intestinal transplant recipients.

    Article  CAS  PubMed  Google Scholar 

  25. Sanos SL, Vonarbourg C, Mortha A, et al. Control of epithelial cell function by interleukin-22-producing RORgammat+ innate lymphoid cells. Immunology. 2011;132(4):453–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. 2008;29(6):958–70.

    Article  CAS  PubMed  Google Scholar 

  27. Monticelli LA, Sonnenberg GF, Abt MC, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011;12(11):1045–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol. 2011;12(5):383–90.

    Article  CAS  PubMed  Google Scholar 

  29. Konya V, Mjosberg J. Innate lymphoid cells in graft-versus-host disease. Am J Transplant. 2015;15(11):2795–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hazenberg MD, Spits H. Human innate lymphoid cells. Blood. 2014;124(5):700–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hanash AM, Dudakov JA, Hua G, et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity. 2012;37(2):339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Munneke JM, Bjorklund AT, Mjosberg JM, et al. Activated innate lymphoid cells are associated with a reduced susceptibility to graft-versus-host disease. Blood. 2014;124(5):812–21. This article highlights the significance of innate lymphoid cells for graft versus host disease.

    Article  CAS  PubMed  Google Scholar 

  33. Sonnenberg GF, Monticelli LA, Alenghat T, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. 2012;336(6086):1321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sawa S, Lochner M, Satoh-Takayama N, et al. RORgammat + innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 2011;12:320–6.

    Article  CAS  PubMed  Google Scholar 

  35. Hepworth MR, Monticelli LA, Fung TC, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498(7452):113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gladiator A, Wangler N, Trautwein-Weidner K, et al. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol. 2013;190:521–5.

    Article  CAS  PubMed  Google Scholar 

  37. Gessner MA, Werner JL, Lilly LM, et al. Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. Infect Immun. 2012;80(1):410–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindemans CA, Calafiore M, Mertelsmann AM, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528(7583):560–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Talayero P, Mancebo E, Calvo-Pulido J, et al. Innate lymphoid cells groups 1 and 3 in the epithelial compartment of functional human intestinal allografts. Am J Transplant. 2016;16(1):72–82. This paper characterizes intraepithelial innate lymphoid cell populations in intestinal transplant recipients.

    Article  CAS  PubMed  Google Scholar 

  40. Sano T, Huang W, Hall J, et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell. 2015;163:381–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weaver C, Hatton R, Mangan P, et al. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Ann Rev Immunol. 2007;25:821–52.

    Article  CAS  Google Scholar 

  42. Burkett P, Meyer zu Horste G, Kuchroo V. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J Clin Invest. 2015;125:2211–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116:1310–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahern P, Schiering C, Buonocore S, et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010;33:279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Beelen A, Zelinkova Z, Taanman-Kueter EW, et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity. 2007;27:660–9.

    Article  PubMed  Google Scholar 

  46. Esplugues E, Huber S, Gagliani N, et al. Control of TH17 cells occurs in the small intestine. Nature. 2011;475(7357):514–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007;204(8):1849–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sarra M, Pallone F, Macdonald TT, et al. IL-23/IL-17 axis in IBD. Inflamm Bowel Dis. 2010;16(10):1808–13.

    Article  PubMed  Google Scholar 

  49. Sung RS. What’s hot, what’s new in clinical organ transplantation: report from the American Transplant Congress 2015. Am J Transplant. 2015;15(11):2808–13.

    Article  CAS  PubMed  Google Scholar 

  50. Kroemer A, Wanta S, Diaz J, et al. Th17-mediated alloimmune responses play a key role in intestinal allograft rejection in humans [abstract]. Am J Transplant. 2015;15 Suppl 3:S1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kroemer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and were in compliance with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Small Intestine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroemer, A., Cosentino, C., Kaiser, J. et al. Intestinal Transplant Inflammation: the Third Inflammatory Bowel Disease. Curr Gastroenterol Rep 18, 56 (2016). https://doi.org/10.1007/s11894-016-0530-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-016-0530-0

Keywords

Navigation