Skip to main content

Induction and Maintenance Immunosuppression in Intestinal Transplantation

  • Living reference work entry
  • First Online:
Solid Organ Transplantation in Infants and Children

Part of the book series: Organ and Tissue Transplantation ((OTT))

  • 95 Accesses

Abstract

Intestinal and multivisceral transplantation are highly complex and challenging procedures for patients with irreversible and complicated intestinal failure. In recent years, significant improvements in patient and graft survival have been achieved. To date, these results correspond to similar survival rates for patients without life-threatening complications on parenteral nutrition. Graft immunogenicity is a major hurdle and graft rejection remains a potentially life threatening complication after ITX.

Due to significantly improved survival rates, the use of induction therapy for patients undergoing ITX has become standard practice. Lymphocyte depleting agents and interleukin 2 receptor antagonists are commonly used in this setting. The introduction of tacrolimus to clinical practice almost 30 years ago revolutionized the field of ITX and contributed significantly to clinical establishment of this procedure. Combination with antiproliferative agents may turn out to stabilize long-term transplant survival.

Traditional treatment for acute rejection comprises bolus steroids and lymphocyte depletion. Clinical experience has been gained with the use of TNFα-inhibitors in certain states of allograft rejection and inflammation, respectively. However, antibody-mediated mechanisms in intestine rejection have achieved increasing attention.

Experimental research and clinical trials are required to elucidate underlying biologic mechanisms and optimize and identify indications for use for novel immunosuppressive strategies targeting cytokines, B-cells, plasma cells, and complement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACR:

Acute cellular rejection

AMR:

Antibody-mediated rejection

APC:

Antigen presenting cells

CMV:

Cytomegalovirus

CNI:

Calcineurin-inhibitors

CsA:

Cyclosporine A

DSA:

Donor-specific antibodies

EBV:

Epstein barr virus

GvHD:

Graft versus host disease

HLA:

Human leukocyte antigen

IBD:

Inflammatory bowel disease

IITR:

International intestinal transplant

IL-2R:

IL-2/IL-2 receptor

IR:

Ischemia reperfusion

ITX:

Intestinal transplantation

IVIGs:

Intravenous immunoglobulins

mAb:

Monoclonal antibody

MMF:

Mycophenolate mofetil

mTOR:

Mammalian target of rapamycin

MVTX:

Multivisceral transplantation

NOD:

Nucleotide oligomerization domain

OPTN:

Organ Procurement and Transplantation Network

PTLD:

Posttransplant lymphoproliferative disease

SRTR:

Scientific Registry of Transplant Recipients

TLR:

Toll-like receptors

References

  • Abu-Elmagd K, Fung J, McGhee W et al (2000) The efficacy of daclizumab for intestinal transplantation: preliminary report. Transplant Proc 32(6):1195–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abu-Elmagd KM, Costa G, Bond GJ et al (2009a) Five hundred intestinal and multivisceral transplantations at a single center: major advances with new challenges. Ann Surg 250(4):567–581

    PubMed  Google Scholar 

  • Abu-Elmagd KM, Costa G, Bond GJ et al (2009b) Evolution of the immunosuppressive strategies for the intestinal and multivisceral recipients with special reference to allograft immunity and achievement of partial tolerance. Transpl Int 22(1):96–109

    Article  PubMed  Google Scholar 

  • Abu-Elmagd KM, Wu G, Costa G et al (2012) Preformed and de novo donor specific antibodies in visceral transplantation: long-term outcome with special reference to the liver. Am J Transplant 12:3047–3060

    Article  CAS  PubMed  Google Scholar 

  • Alegre M-L, Chen L, Wang T et al (2009) Antagonistic effects of toll-like receptor signaling and bacterial infections on transplantation tolerance. Transplantation 87(9):S77–S79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashton-Chess J, Giral M, Brouard S et al (2007) Spontaneous operational tolerance after immunosuppressive drug withdrawal in clinical renal allotransplantation. Transplantation 84:1215–1219

    Article  PubMed  Google Scholar 

  • Beniaminovitz A, Itescu S, Lietz K et al (2000) Prevention of rejection in cardiac transplantation by blockade of the interleukin-2 receptor with a monoclonal antibody. N Eng J Med 342(9):613–619 23

    Google Scholar 

  • Bland PW, Bailey M (1998) Immunology of the small intestine. Transplant Proc 30:2560–2561

    Article  CAS  PubMed  Google Scholar 

  • Brayman K (2007) New insights into the mechanisms of action of thymoglobulin. Transplantation 84:S3–S4

    Article  Google Scholar 

  • Brock MV, Borja MC, Ferber L et al (2001) Induction therapy in lung transplantation: a prospective, controlled clinical trial comparing OKT3, anti-thymocyte globulin, and daclizumab. J Heart Lung Transplant 20(12):1282–1290 26

    Google Scholar 

  • Buhaescu I, Segall L, Goldsmith D et al (2005) New immunosuppressive therapies in renal transplantation: monoclonal antibodies. J Nephrol 18:529–536

    CAS  PubMed  Google Scholar 

  • Calne R, Friend P, Moffat S et al (1998) Prope tolerance, perioperative campath IH, and low-dose cyclosporine monotherapy in renal allograft recipients. Lancet 351:1701

    Article  CAS  PubMed  Google Scholar 

  • Carreno MR, Kato T, Weppler D et al (2001) Induction therapy with daclizumab as part of the immunosuppressive regimen in human small bowel and multiorgan transplants. Transplant Proc 33(1–2):1015–1017 22

    Google Scholar 

  • Chen L, Wang T, Zhou P et al (2006) TLR engagement prevents transplantation tolerance. Am J Transplant 6(10):2282–2291

    Article  CAS  PubMed  Google Scholar 

  • de Serre NP, Canioni D, Lacaille F et al (2008) Evaluation of C4d deposition and circulating antibody in small bowel transplantation. Am J Transplant 8:1290–1296

    Article  PubMed  Google Scholar 

  • Dick AA, Horslen S (2012) Antibody-mediated rejection after intestinal transplantation. Curr Opin Organ Transplant 17(3):250–257

    Article  CAS  PubMed  Google Scholar 

  • Dunn TB, Noreen H, Gillingham K et al (2011) Revisiting traditional risk factors for rejection and graft loss after kidney transplantation. Am J Transplant 11:2132–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer MJ, Hale G, Hayhoe FG et al (1989) Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood 73(6):1431–1439

    CAS  PubMed  Google Scholar 

  • Eskandary F, Wahrmann M, Mühlbacher J et al (2016) Complement inhibition as potential new therapy for antibody-mediated rejection. Transpl Int 29(4):392–402

    Article  CAS  PubMed  Google Scholar 

  • Esposito E, Cuzzocrea S (2009) TNF-α as a therapeutic target in inflammatory diseases, ischemia-reperfusion injury and trauma. Curr Med Chem 16(24):3152–3167

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Tryphonopoulos P, Tekin A et al (2015) Eculizumab salvage therapy for antibody-mediated rejection in a desensitization-resistant intestinal re-transplant patient. Am J Transplant 15(7):1995–2000

    Article  CAS  PubMed  Google Scholar 

  • Farmer DG, McDiarmid SV, Kuniyoshi J et al (1994) Intragraft expression of messenger RNA for interleukin-6 and TNF-alpha is a predictor of rat small intestine transplant rejection. J Surg Res 57:138–142

    Article  CAS  PubMed  Google Scholar 

  • Farmer DG, McDiarmid SV, Yersiz H et al (2002) Outcomes after intestinal transplantation: a single-center experience over a decade. Transplant Proc 34(3):896–897

    Article  CAS  PubMed  Google Scholar 

  • Fishbein TM, Florman S, Gondolesi G et al (2002) Intestinal transplantation before and after the introduction of sirolimus. Transplantation 73(10):1538–1542

    Article  CAS  PubMed  Google Scholar 

  • Fishbein TM, Kaufman SS, Florman SS et al (2003) Isolated intestinal transplantation: proof of clinical efficacy. Transplantation 76(4):636–640

    Article  PubMed  Google Scholar 

  • Fishbein T, Novitsky G, Mishra L et al (2008) NOD2-expressing bone marrow derived cells appear to regulate epithelial innate immunity of the transplanted human small intestine. Gut 57:323–330

    Article  CAS  PubMed  Google Scholar 

  • Gabardi S, Tullius SG, Krenzien F (2015) Understanding alterations in drug handling with aging: a focus on the pharmacokinetics of maintenance immunosuppressants in the elderly. Curr Opin Organ Transplant 20(4):424–430

    Article  CAS  PubMed  Google Scholar 

  • Garcia M, Weppler D, Mittal N et al (2004) Campath-1H immunosuppressive therapy reduces incidence and intensity of acute rejection in intestinal and multivisceral transplantation. Transplant Proc 36(2):323–324

    Article  CAS  PubMed  Google Scholar 

  • Garrity ER Jr, Villanueva J, Bhorade SM et al (2001) Low rate of acute lung allograft rejection after the use of daclizumab, an interleukin 2 receptor antibody. Transplantation 71(6):773–777

    Article  CAS  PubMed  Google Scholar 

  • Gerlach UA, Schoenemann C, Lachmann N et al (2011a) Salvage therapy for refractory rejection and persistence of donor-specific antibodies after intestinal transplantation using the proteasome inhibitor bortezomib. Transpl Int 24(5):e43–e45

    Article  PubMed  Google Scholar 

  • Gerlach UA, Koch M, Mueller HP et al (2011b) Tumor necrosis factor alpha inhibitors as immunomodulatory antirejection agents after intestinal transplantation. Am J Transplant 11:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Gerlach UA, Atanasov G, Wallenta L et al (2014a) Short-term TNF-alpha inhibition reduces short-term and long-term inflammatory changes post-ischemia/reperfusion in rat intestinal transplantation. Transplantation 97(7):732–739

    Article  CAS  PubMed  Google Scholar 

  • Gerlach UA, Lachmann N, Sawitzki B et al (2014b) Clinical relevance of the de novo production of anti-HLA antibodies following intestinal and multivisceral transplantation. Transpl Int 27(3):280–289

    Article  CAS  PubMed  Google Scholar 

  • Goulet O, Lacaille F, Colomb V et al (2002) Intestinal transplantation in children: Paris experience. Transplant Proc 34(5):1887–1888

    Article  PubMed  Google Scholar 

  • Goulet O, Damotte D, Sarnacki S (2005) Liver-induced immune tolerance in recipients of combined liver-intestine transplants. Transplant Proc 37:1689–1690

    Article  CAS  PubMed  Google Scholar 

  • Grant D, Abu-Elmagd K, Reves J et al (2003) Report of the intestine transplant registry: a new era has dawned. Ann Surg 241:604–613

    Google Scholar 

  • Grant D, Abu-Elmagd K, Mazariegos G et al (2015) Intestinal transplant registry report: global activity and trends. Am J Transplant 15(1):210–219

    Article  CAS  PubMed  Google Scholar 

  • Hale G, Bunjes D, Wiesneth M et al (1986) Ex vivo T-cell depletion with the monoclonal antibody Campath-1 plus human complement effectively prevents acute graft-versus-host disease in allogeneic bone marrow transplantation. Br J Haematol 64(3):479–486

    Article  PubMed  Google Scholar 

  • Hale G, Jacobs P, Wood L et al (2000) CD52 antibodies for prevention of graft-versus-host disease and graft rejection following transplantation of allogeneic peripheral blood stem cells. Bone Marrow Transplant 26(1):69–76

    Article  CAS  PubMed  Google Scholar 

  • Heit W, Bunjes D, Wiesneth M, Schmeiser T, Arnold R, Hale G, Waldmann H, Heimpel H (1986) Ex vivo T-cell depletion with the monoclonal antibody Campath-1 plus human complement effectively prevents acute graft-versus-host disease in allogeneic bone marrow transplantation. Br J Haematol 64(3):479–86

    Google Scholar 

  • Hering BJ, Kandaswamy R, Ansite JD et al (2005) Single-donor, marginal dose islet transplantation in patients with type 1 diabetes. JAMA 293:830–835

    Article  CAS  PubMed  Google Scholar 

  • Hershberger RE, Starling RC, Eisen HJ et al (2005) Daclizumab to prevent rejection after cardiac transplantation. N Engl J Med 352(26):2705–2713 24

    Google Scholar 

  • Hourmant M, Cesbron-Gautier A, Terasaki PI et al (2005) Frequency and clinical implications of development of donor-specific and non donor-specific HLA antibodies after kidney transplantation. J Am Soc Nephrol 16:2804–2812

    Article  CAS  PubMed  Google Scholar 

  • ITR (2014) 2013 bi annual report. In: Grant D (ed) Intestinal transplant registry. Intestinal Transplant Association, Toronto

    Google Scholar 

  • Kawai T, Cosimi B, Spitzer TR et al (2008) HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med 358:353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly DA (2006) Current issues in pediatric transplantation. Pediatr Transplant 10:712–720

    Article  CAS  PubMed  Google Scholar 

  • Kirk AD, Hale DA, Mannon RB et al (2003) Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation 76:120–129

    Article  CAS  PubMed  Google Scholar 

  • Knechtle SJ, Pirsch JD, Fechner J Jr et al (2003) Campath-1H induction plus rapamycin monotherapy for renal transplantation: results of a pilot study. Am J Transplant 3:722–730

    Article  CAS  PubMed  Google Scholar 

  • Kobashigawa J, David K, Morris J et al (2005) Daclizumab is associated with decreased rejection and no increased mortality in cardiac transplant patients receiving MMF, cyclosporine, and corticosteroids. Transplant Proc 37(2):1333–1339 25

    Google Scholar 

  • Krenzien F, ElKhal A, Quante M et al (2015) A rationale for age-adapted immunosuppression in organ transplantation. Transplantation 99(11):2258–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubal C, Mangus R, Saxena R et al (2015) Prospective monitoring of donor-specific anti-HLA antibodies after intestine/multivisceral transplantation: significance of de novo antibodies. Transplantation 99(8):e49–e56

    Article  CAS  PubMed  Google Scholar 

  • http://www.intestinaltransplant.org/itr/. Last date of access 1 Apr 2016

  • http://srtr.transplant.hrsa.gov/. Last date of access 1 Apr 2016

  • Lauro A, Bagni C, Zanfi S et al (2013a) Mortality after steroid-resistant acute cellular rejection and chronic rejection episodes in adult intestinal transplants: report from a single center in induction/preconditioning era. Transplant Proc 45:2032–2033

    Article  CAS  PubMed  Google Scholar 

  • Lauro A, Zanfi C, Bagni A et al (2013b) Induction therapy in adult intestinal transplantation: reduced incidence of rejection with “2-dose” alemtuzumab protocol. Clin Transplant 27(4):567–570

    Article  CAS  PubMed  Google Scholar 

  • Lee PC, Zhu L, Terasaki PI et al (2009) HLA-specific antibodies developed in the first year posttransplant are predictive of chronic rejection and renal graft loss. Transplantation 88:568–574

    Article  CAS  PubMed  Google Scholar 

  • Lefaucheur C, Nochy D, Hill GS et al (2007) Determinants of poor graft outcome in patients with antibody-mediated acute rejection. Am J Transplant 7:832–841

    Article  CAS  PubMed  Google Scholar 

  • Lodhi SA, Lamb KE, Meier-Kriesche HU (2011) Solid organ allograft survival improvement in the United States: the long-term does not mirror the dramatic short-term success. Am J Transplant 11(6):1226–1235

    Article  CAS  PubMed  Google Scholar 

  • López-García P, Calvo Pulido J et al (2014) Histologic evaluation of post-implantation immediate C4d deposition in 13 intestinal grafts: correlation with cell-based crossmatching, cold ischemia time, and preservation injury. Transplant Proc 46(6):2099–2101

    Article  PubMed  Google Scholar 

  • Loupy A, Suberbielle-Boissel C, Hill GS et al (2009) Outcome of subclinical antibody-mediated rejection in kidney transplant recipients with preformed donor-specific antibodies. Am J Transplant 9:2561–2570

    Article  CAS  PubMed  Google Scholar 

  • Mao Q, Terasaki PI, Cai J et al (2007) Extremely high association between appearance of HLA antibodies and failure of kidney grafts in a five year longitudinal study. Am J Transplant 7:864–871

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto CS, Zasloff MA, Fishbein TM (2014) Chronic mucosal inflammation/inflammatory bowel disease-like inflammation after intestinal transplantation: where are we now? Curr Opin Organ Transplant 19(3):276–280

    Article  CAS  PubMed  Google Scholar 

  • Mazariegos GV, Sindhi R, Thomson AW et al (2006) Clinical tolerance following liver transplantation: long term results and future prospects. Transpl Immunol 17:114–119

    Article  PubMed  Google Scholar 

  • Minneci PC (2014) Intestinal transplantation: an overview. Pathophysiology 21(1):119–122

    Article  PubMed  Google Scholar 

  • Mueller AR, Platz KP, Heckert C et al (1998) The extracellular matrix: an early target of preservation/reperfusion injury and acute rejection after small bowel transplantation. Transplantation 65:770–776

    Article  CAS  PubMed  Google Scholar 

  • Murase N, Starzl TE, Tanabe M et al (1995) Variable chimerism, graft versus host disease, and tolerance after different kinds of cell and whole organ transplantation from Lewis to Brown-Norway rats. Transplantation 60:158–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newell KA, He G, Hart J et al (1997) Treatment with either anti-CD4 or anti-CD8 monoclonal antibodies blocks alphabeta T cell-mediated rejection of intestinal allografts in mice. Transplantation 64(7):959–965

    Article  CAS  PubMed  Google Scholar 

  • Nishida S, Levi D, Kato T et al (2002) Ninety-five cases of intestinal transplantation at the University of Miami. J Gastrointest Surg 6(2):233–239

    Article  PubMed  Google Scholar 

  • Pascher A, Klupp J (2005) Biologics in the treatment of transplant rejection and ischemia/reperfusion injury: new applications for TNFa inhibitors? BioDrugs 19:211–231

    Article  CAS  PubMed  Google Scholar 

  • Pascher A, Radke C, Dignass A et al (2003) Successful infliximab treatment of steroid and OKT3-refractory acute cellular rejection in two patients after intestinal transplantation. Transplantation 76:615–618

    Article  CAS  PubMed  Google Scholar 

  • Pech T, Finger T, Fujishiro J et al (2010) Perioperative infliximab application ameliorates acute rejection associated inflammation after intestinal transplantation. Am J Transplant 10:2431–2441

    Article  CAS  PubMed  Google Scholar 

  • Pirenne J, Kawai M (2004) Tolerogenic protocols for intestinal transplantation. Transpl Immunol 13:131–137

    Article  CAS  PubMed  Google Scholar 

  • Pirenne J, Kawai M (2006) The protective effect of the liver: does it apply to the bowel too? Transplantation 81:978–979

    Article  PubMed  Google Scholar 

  • Rebello P, Hale G (2002) Pharmacokinetics of CAMPATH-1H: assay development and validation. J Immunol Methods 260:285

    Article  CAS  PubMed  Google Scholar 

  • Rebello PR, Hale G, Friend PJ et al (1999) Anti-globulin responses to rat and humanized CAMPATH-1 monoclonal antibody used to treat transplant rejection. Transplantation 68(9):1417–1420

    Article  CAS  PubMed  Google Scholar 

  • Reyes J, Mazariegos GV, Bond GM et al (2002) Pediatric intestinal transplantation: historical notes, principles and controversies. Pediatr Transplant 6(3):193–207

    Article  PubMed  Google Scholar 

  • Robb RJ, Munck A, Smith KA (1981) T cell growth factor receptors quantitation, specificity, and biological relevance. J Exp Med 154(5):1455–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowan W, Tite J, Topley P et al (1998) Cross-linking of the CAMPATH-1 antigen (CD52) mediates growth inhibition in human B- and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells. Immunology 95(3):427–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz P, Garcia M, Pappas P et al (2003) Mucosal vascular alterations in isolated small-bowel allografts: relationship to humoral sensitization. Am J Transplant 3:43–49

    Article  PubMed  Google Scholar 

  • Scandling JD, Busque S, Dejbakhsh-Jones S et al (2008) Tolerance and chimerism after renal and hematopoietic-cell transplantation. N Engl J Med 358:362–368

    Article  CAS  PubMed  Google Scholar 

  • Smith JM, Skeans MA, Horslen SP et al (2008) OPTN/SRTR 2013 annual data report: intestine. Am J Transplant 15(2):1–16

    Google Scholar 

  • Starzl TE, Kaupp HA Jr (1960) Mass homotransplantations of abdominal organs in dogs. Surg Forum 11:28–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart FP, Leventhal JR, Kaufman DB et al (2002) Alemtuzumab facilitates prednisone free immunosuppression in kidney transplant recipients with no early rejection. Am J Transplant 2(3):397–348

    Google Scholar 

  • Sudan D (2014) The current state of intestine transplantation: indications, techniques, outcomes and challenges. Am J Transplant 14(9):1976–1984

    Article  CAS  PubMed  Google Scholar 

  • Takeshita T, Asao H, Ohtani K et al (1992) Cloning of the gamma chain of the human IL-2 receptor. Science 257(5068):379–382

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi T, Minami Y (1993) The IL-2/IL-2 receptor system: a current overview. Cell 73(1):5–8

    Article  CAS  PubMed  Google Scholar 

  • Todo S, Tzakis AG, Abu-Elmagd K et al (1992) Intestinal transplantation in composite visceral grafts or alone. Ann Surg 216:223–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touzot M, Obada EN, Beaudreuil S et al (2014) Complement modulation in solid-organ transplantation. Transplant Rev 28(3):119–125

    Article  Google Scholar 

  • Trevizol AP, David AI, Dias ER et al (2012) Intestinal and multivisceral transplantation immunosuppression protocols – literature review. Transplant Proc 44(8):2445–2448

    Article  CAS  PubMed  Google Scholar 

  • Troxell ML, Higgins JP, Kambham N et al (2006) Evaluation of C4d staining in liver and small intestine allografts. Arch Pathol Lab Med 130:1489–1496

    PubMed  Google Scholar 

  • Tzakis AG, Kato T, Nishida S et al (2003a) Preliminary experience with campath 1H (C1H) in intestinal and liver transplantation. Transplantation 75:1227–1231

    Article  CAS  PubMed  Google Scholar 

  • Tzakis AG, Kato T, Nishida S et al (2003b) Alemtuzumab (Campath-1H) combined with tacrolimus in intestinal and multivisceral transplantation. Transplantation 75(9):1512–1517

    Article  CAS  PubMed  Google Scholar 

  • Vianna RM, Mangus RS, Fridell JA et al (2008) Induction immunosuppression with thymoglobulin and rituximab in intestinal and multivisceral transplantation. Transplantation 85(9):1290–1293

    Article  CAS  PubMed  Google Scholar 

  • Vincenti F (2003) New monoclonal antibodies in renal transplantation. Minerva Urol Nefrol 55:57–66

    CAS  PubMed  Google Scholar 

Download references

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Pascher .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Atanasov, G., Pascher, A. (2017). Induction and Maintenance Immunosuppression in Intestinal Transplantation. In: Dunn, S., Horslen, S. (eds) Solid Organ Transplantation in Infants and Children. Organ and Tissue Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-08049-9_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08049-9_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08049-9

  • Online ISBN: 978-3-319-08049-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics