Skip to main content

Advertisement

Log in

Ravages of Diabetes on Gastrointestinal Sensory-Motor Function: Implications for Pathophysiology and Treatment

  • Neurogastroenterology and Motility Disorders of the Gastrointestinal Tract (S Rao, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Symptoms related to functional and sensory abnormalities are frequently encountered in patients with diabetes mellitus. Most symptoms are associated with impaired gastric and intestinal function. In this review, we discuss basic concepts of sensory-motor dysfunction and how they relate to clinical findings and gastrointestinal abnormalities that are commonly seen in diabetes. In addition, we review techniques that are available for investigating the autonomic nervous system, neuroimaging and neurophysiology of sensory-motor function. Such technological advances, while not readily available in the clinical setting, may facilitate stratification and individualization of therapy in diabetic patients in the future. Unraveling the structural, mechanical, and sensory remodeling in diabetes disease is based on a multidisciplinary approach that can bridge the knowledge from a variety of scientific disciplines. The final goal is to increase the understanding of the damage to GI structures and to sensory processing of symptoms, in order to assist clinicians with developing an optimal mechanics based treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Seuring T, Archangelidi O, Suhrcke M. The economic costs of type 2 diabetes: a global systematic review. Pharmacoeconomics. 2015;33(8):811–31.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Verne GN, Sninsky CA. Diabetes and the gastrointestinal tract. Gastroenterol Clin North Am. 1998;27(4):861–74. vi-vii.

    Article  CAS  PubMed  Google Scholar 

  3. Folwaczny C, Riepl R, Tschöp M, Landgraf R. Gastrointestinal involvement in patients with diabetes mellitus: part I (first of two parts). Epidemiology, pathophysiology, clinical findings. Z Gastroenterol. 1999;37(9):803–15.

    CAS  PubMed  Google Scholar 

  4. Folwaczny C, Riepl R, Tschöp M, et al. Gastrointestinal involvement in patients with diabetes mellitus: part II (second of two parts). Diagnostic procedures, pharmacological and nonpharmacological therapy. Z Gastroenterol. 1999;37(9):817–26.

    CAS  PubMed  Google Scholar 

  5. Rosztóczy A, Róka R, Várkonyi TT, et al. Regional differences in the manifestation of gastrointestinal motor disorders in type 1 diabetic patients with autonomic neuropathy. Z Gastroenterol. 2004;42(11):1295–300.

    Article  PubMed  Google Scholar 

  6. Zhao J, Frøkjaer JB, Drewes AM, et al. Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus. World J Gastroenterol. 2006;12(18):2846–57.

    PubMed Central  PubMed  Google Scholar 

  7. Horowitz M, Samsom M. Gastrointestinal function in diabetes mellitus. Chichester: John Wiley & Sons, Ltd; 2004.

    Book  Google Scholar 

  8. Chandrasekharan B, Anitha M, Blatt R, et al. Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol Motil. 2011;23(2):131–8. e26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil. 2014;26(5):611–24. In this review, authors summarize the alterations in the enteric nervous system including enteric neurons, interstitial cells of Cajal, and neurotransmission in diabetic animal models and patients. The possible underlying mechanisms of these alterations including diabetes-induced changes in the gastrointestinal smooth muscle were discussed. The authors also discussed recent advances and potential areas for future research related to diabetes and the ENS such as gut microbiota, micro-RNAs, and changes in the microvasculature and endothelial dysfunction.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kamenov ZA, Traykov LD. Diabetic autonomic neuropathy. Adv Exp Med Biol. 2012;771:176–93.

    PubMed  Google Scholar 

  11. Zhao J, Liao D, Yang J, Gregersen H. Biomechanical remodeling of the diabetic gastrointestinal tract. In: Biomechanics: Principles, Trends and Applications. Jerrod H. Levy edit. 2010; Chapter 5, PP 137-162; Nova Publishers, USA. ISBN 978-1-60741-394-3 This article outlines the morphological changes and biomechanical remodeling of the gastrointestinal (GI) tract in diabetes and demonstrated that the remodeling plays an important role for the GI sensory-motor dysfunction caused by diabetes.

  12. Verrotti A, Prezioso G, Scattoni R, et al. Autonomic neuropathy in diabetes mellitus. Front Endocrinol (Lausanne). 2014;5:205. doi:10.3389/fendo.2014.00205.eCollection2014.

    Google Scholar 

  13. Smith B. Neuropathology of the oesophagus in diabetes mellitus. J Neurol Neurosurg Psychiatry. 1974;37:1151–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Guy RJ, Dawson JL, Garrett JR, et al. Diabetic gastroparesis from autonomic neuropathy: surgical considerations and changes in vagus nerve morphology. J Neurol Neurosurg Psychiatry. 1984;47:686–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yagihashi S, Sima AA. Diabetic autonomic neuropathy in BB rat. Ultrastructural and morphometric changes in parasympathetic nerves. Diabetes. 1986;35:733–43.

    Article  CAS  PubMed  Google Scholar 

  16. Carroll SL, Byer SJ, Dorsey DA, et al. Ganglion-specific patterns of diabetes-modulated gene expression are established in prevertebral and paravertebral sympathetic ganglia prior to the development of neuroaxonal dystrophy. J Neuropathol Exp Neurol. 2004;63:1144–54.

    Article  PubMed  Google Scholar 

  17. Yoshida MM, Schuffler MD, Sumi SM. There are no morphologic abnormalities of the gastric wall or abdominal vagus in patients with diabetic gastroparesis. Gastroenterology. 1988;94:907–14.

    CAS  PubMed  Google Scholar 

  18. Furness JB, Callaghan BP, Rivera LR, et al. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 2014;817:39–71.

    Article  PubMed  Google Scholar 

  19. Diani AR, Gerritsen GC, Stromsta S, et al. A study of the morphological changes in the small intestine of the spontaneously diabetic Chinese hamster. Diabetologia. 1976;12:101–9.

    Article  CAS  PubMed  Google Scholar 

  20. Demedts I, Masaoka T, Kindt S, et al. Gastrointestinal motility changes and myenteric plexus alterations in spontaneously diabetic biobreeding rats. J Neurogastroenterol Motil. 2013;19:161–70.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Huizinga JD, Chen JH. Interstitial cells of Cajal: update on basic and clinical science. Curr Gastroenterol Rep. 2014;16(1):363. doi:10.1007/s11894-013-0363-z.

    Article  PubMed  Google Scholar 

  22. Ward SM, Sanders KM. Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract. J Physiol. 2006;576:675–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wu YS, Lu HL, Huang X, et al. Diabetes-induced loss of gastric ICC accompanied by up-regulation of natriuretic peptide signaling pathways in STZ-induced diabetic mice. Peptides. 2013;40:104–11.

    Article  CAS  PubMed  Google Scholar 

  24. Southwell BR. Loss of interstitial cells of Cajal may be central to poor intestinal motility in diabetes mellitus. J Gastroenterol Hepatol. 2008;23(4):505–7.

    Article  PubMed  Google Scholar 

  25. Wang XY, Huizinga JD, Diamond J, et al. Loss of intramuscular and submuscular interstitial cells of Cajal and associated enteric nerves is related to decreased gastric emptying in streptozotocin-induced diabetes. Neurogastroenterol Motil. 2009;21(10):1095–e92.

    Article  PubMed  Google Scholar 

  26. Lin L, Xu LM, Zhang W, et al. Roles of stem cell factor on the depletion of interstitial cells of Cajal in the colon of diabetic mice. Am J Physiol Gastrointest Liver Physiol. 2010;298(2):G241–7.

    Article  CAS  PubMed  Google Scholar 

  27. Angeli TR, Cheng LK, Du P, et al. Loss of interstitial cells of Cajal and patterns of gastric dysrhythmia in patients with chronic unexplained nausea and vomiting. Gastroenterology. 2015;149(1):56–66.e5.

    Article  PubMed  Google Scholar 

  28. Nakahara M, Isozaki K, Hirota S, et al. Deficiency of KIT-positive cells in the colon of patients with diabetes mellitus. J Gastroenterol Hepatol. 2002;17:666–70.

    Article  PubMed  Google Scholar 

  29. Iyer SK, Chandrasekhara KL, Sutton A. Diffuse muscular hypertrophy of esophagus. Am J Med. 1986;80:849–52.

    Article  CAS  PubMed  Google Scholar 

  30. Frokjaer JB, Andersen SD, Ejskjaer N, et al. Impaired contractility and remodeling of the upper gastrointestinal tract in diabetes mellitus type-1. World J Gastroenterol. 2007;13(36):4881–90.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Yang J, Zhao J, Zeng Y, et al. Biomechanical properties of the rat oesophagus in experimental type-1 diabetes. Neurogastroenterol Motil. 2004;16(2):195–203.

    Article  CAS  PubMed  Google Scholar 

  32. Yang J, Zhao J, Liao D, et al. Biomechanical properties of the layered oesophagus and its remodelling in experimental type-1 diabetes. J Biomech. 2006;39(5):894–904.

    Article  PubMed  Google Scholar 

  33. Zhao J, Liao D, Gregersen H. Biomechanical and histomorphometric esophageal remodeling in type 2 diabetic GK rats. J Diabetes Complications. 2007;21(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe T, Asanuma A, Tanaka M, et al. Morphological study on the gastric mucosa in diabetes mellitus rats induced by streptozotocin. Exp Anim. 1995;43:693–6.

    CAS  PubMed  Google Scholar 

  35. Ejskjaer NT, Bradley JL, Buxton-Thomas MS, et al. Novel surgical treatment and gastric pathology in diabetic gastroparesis. Diabet Med. 1999;16:488–95.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao J, Yang J, Gregersen H. Biomechanical and morphometric intestinal remodelling during experimental diabetes in rats. Diabetologia. 2003;46:1688–97.

    Article  CAS  PubMed  Google Scholar 

  37. Zoubi SA, Mayhew TM, Sparrow RA. The small intestine in experimental diabetes: cellular adaptation in crypts and villi at different longitudinal sites. Virchows Arch. 1995;426(5):501–7.

    Article  CAS  PubMed  Google Scholar 

  38. Charlton M, Ahlman B, Nair KS. The effect of insulin on human small intestinal mucosal protein synthesis. Gastroenterology. 2000;118:299–306.

    Article  CAS  PubMed  Google Scholar 

  39. Noda T, Iwakiri R, Fujimoto K, Yoshida T, Utsumi H, Sakata H, et al. Suppression of apoptosis is responsible for increased thickness of intestinal mocosa in streptozotocin-induced diabetic rats. Metabolism. 2001;50(3):259–64.

    Article  CAS  PubMed  Google Scholar 

  40. Zoubi SA, Williams MD, Mayhew TM, Sparrow RA. Number and ultrastructure of epithelial cells in crypts and villi along the streptozotocin-diabetic small intestine: a quantitative study on the effects of insulin and aldose reductase inhibition. Virchows Arch. 1995;427(2):187–93.

    Article  CAS  PubMed  Google Scholar 

  41. Nowak TV, Harrington B, Weisbruch JP, Kalbfleisch JH. Structural and functional characteristics of muscle from diabetic rodent small intestine. Am J Physiol. 1990;258(5 Pt 1):G690–8.

    CAS  PubMed  Google Scholar 

  42. Lincoln J, Bokor JT, Crowe R, et al. Myenteric plexus in streptozotocin-treated rats. Neurochemical and histochemical evidence for diabetic neuropathy in the gut. Gastroenterology. 1984;86(4):654–61.

    CAS  PubMed  Google Scholar 

  43. Spangeus A, Kand M, El-Salhy M. Gastrointestinal endocrine cells in an animal model for human type 2 diabetes. Dig Dis Sci. 1999;44(5):979–85.

    Article  CAS  PubMed  Google Scholar 

  44. Rauma J, Spångeus A, El-Salhy M. Ghrelin cell density in the gastrointestinal tracts of animal models of human diabetes. Histol Histopathol. 2006;21(1):1–5.

    CAS  PubMed  Google Scholar 

  45. Unal A, Guven K, Yurci A, et al. Is increased colon subepithelial collagen layer thickness in diabetic patients related to collagenous colitis? An immunohistochemical study. Pathol Res Pract. 2008;204(8):537–44.

    Article  PubMed  Google Scholar 

  46. Bytzer P, Talley NJ, Leemon M, et al. Prevalence of gastrointestinal symptoms associated with diabetes mellitus: a population-based survey of 15,000 adults. Arch Intern Med. 2001;161:1989–96.

    Article  CAS  PubMed  Google Scholar 

  47. Ricci JA, Siddique R, Stewart WF, et al. Upper gastrointestinal symptoms in a U.S. national sample of adults with diabetes. Scand J Gastroenterol. 2000;35:152–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ko GT, Chan WB, Chan JC, et al. Gastrointestinal symptoms in Chinese patients with type 2 diabetes mellitus. Diabet Med. 1999;16:670–4.

    Article  CAS  PubMed  Google Scholar 

  49. Brock C, Softeland E, Gunterberg V, et al. Diabetic autonomic neuropathy affects symptom generation and brain-gut axis. Diabetes Care. 2013;36:3698–705. This paper provides evidence for interaction between autonomic neuropathy and peripheral nervous degeneration, as well as changes in dipole sources in diabetic patients with GI symptoms. The findings may lead to improved treatment modalities targeting pharmacological neuroprotection or neuromodulation.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Drewes AM, Søfteland E, Dimcevski D, et al. Brain changes in diabetes mellitus patients with gastrointestinal symptoms. World J Diabetes. 2015 in press.

  51. Deguchi T, Nishio Y, Takashima H. Diabetes mellitus and autoimmune neuropathy. Brain Nerve. 2014;66:135–47.

    PubMed  Google Scholar 

  52. Camilleri M, Bharucha AE, Farrugia G. Epidemiology, mechanisms, and management of diabetic gastroparesis. Clin Gastroenterol Hepatol. 2011;9(1):5–12. quiz e7.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Vinik ALET, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001;24(8):1476–85.

    Article  CAS  PubMed  Google Scholar 

  54. Lelic D, Brock C, Softeland E, et al. Brain networks encoding rectal sensation in type 1 diabetes. Neuroscience. 2013;237:96–105.

    Article  CAS  PubMed  Google Scholar 

  55. Frokjaer JB, Andersen SD, Ejskaer N, et al. Gut sensations in diabetic autonomic neuropathy. Pain. 2007;131:320–9.

    Article  PubMed  Google Scholar 

  56. Frokjaer JB, Brock C, Brun J, et al. Esophageal distension parameters as potential biomarkers of impaired gastrointestinal function in diabetes patients. Neurogastroenterol Motil. 2012;24:1016–e544. This article demonstrates that patients with long-standing DM and GI symptoms had a reduced esophageal sensitivity together with a reduced compliance and an increased stiffness, which were correlated to the patients’ GI symptoms. Biomechanical parameters obtained during distension may serve as biomarker for similar pathophysiologic effects of diabetes in the stomach and small bowel. These may contribute to our understanding of the pathophysiology underlying GI dysfunction and symptoms in patients with longstanding DM.

    Article  CAS  PubMed  Google Scholar 

  57. Softeland E, Brock C, Frokjaer JB, et al. Association between visceral, cardiac and sensorimotor polyneuropathies in diabetes mellitus. J Diabetes Complications. 2014;28:370–7.

    Article  PubMed  Google Scholar 

  58. Brock C. Associations between sensorimotor, autonomic and central neuropathies in diabetes mellitus. Journal of Diabetes & Metabolism. 2014; 05.

  59. Bashar Ktirji DK. Disorders of peripheral nerves. 2013-2014.

  60. Drewes AM, Andreasen A, Poulsen LH. Valproate for treatment of chronic central pain after spinal cord injury. A double-blind cross-over study. Paraplegia. 1994;32:565–9.

    Article  CAS  PubMed  Google Scholar 

  61. Hansen AP, Marcussen NS, Klit H, et al. Pain following stroke: a prospective study. Eur J Pain. 2012;16:1128–36.

    Article  CAS  PubMed  Google Scholar 

  62. Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014;4:1339–68.

    Article  PubMed  Google Scholar 

  63. Drewes AM, Reddy H, Pedersen J, et al. Multimodal pain stimulations in patients with grade B oesophagitis. Gut. 2006;55:926–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Dejgaard A, Gade A, Larsson H, et al. Evidence for diabetic encephalopathy. Diabet Med. 1991;8:162–7.

    Article  CAS  PubMed  Google Scholar 

  65. Cooray GK, Hyllienmark L, Brismar T. Decreased cortical connectivity and information flow in type 1 diabetes. Clin Neurophysiol. 2011;122:1943–50.

    Article  PubMed  Google Scholar 

  66. Lelic D, Brock C, Simren M, et al. The brain networks encoding visceral sensation in patients with gastrointestinal symptoms due to diabetic neuropathy. Neurogastroenterol Motil. 2014;26:46–58.

    Article  CAS  PubMed  Google Scholar 

  67. Frokjaer JB, Egsgaard LL, Graversen C, et al. Gastrointestinal symptoms in type-1 diabetes: is it all about brain plasticity? Eur J Pain. 2011;15:249–57.

    Article  PubMed  Google Scholar 

  68. Frokjaer JB, Softeland E, Graversen C, et al. Central processing of gut pain in diabetic patients with gastrointestinal symptoms. Diabetes Care. 2009;32:1274–7.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Brock C, Graversen C, Frokjaer JB, et al. Peripheral and central nervous contribution to gastrointestinal symptoms in diabetic patients with autonomic neuropathy. Eur J Pain. 2013;17:820–31. This article demonstrated that diabetes mellitus patients showed peripheral and central neuroplastic changes. Moreover, the role of abnormal insular processing may explain the appearance and persistence of GI symptoms related to DAN. This enhanced understanding of DAN may have future clinical and therapeutical implications.

    Article  CAS  PubMed  Google Scholar 

  70. Biessels GJ, Reijmer YD. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes. 2014;63:2244–52.

    Article  PubMed  Google Scholar 

  71. Frokjaer JB, Brock C, Softeland E, et al. Macrostructural brain changes in patients with longstanding type 1 diabetes mellitus—a cortical thickness analysis study. Exp Clin Endocrinol Diabetes. 2013;121:354–60.

    Article  CAS  PubMed  Google Scholar 

  72. Frokjaer JB, Andersen LW, Brock C, et al. Altered brain microstructure assessed by diffusion tensor imaging in patients with diabetes and gastrointestinal symptoms. Diabetes Care. 2013;36:662–8.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Frøkjær JB, Olesen SS, Graversen C, et al. Neuroimaging of the human visceral pain system—a methodological review. Scandinavian J Pain. 2011;2:95–104.

    Article  Google Scholar 

  74. Gregersen H, Christensen J. Clinical mechanics in the gut. An introduction. (Betham, London, 2015).

  75. Gregersen H. Biomechanics of the gastrointestinal tract: new perspectives in motility research and diagnostics. London: Springer; 2003.

    Book  Google Scholar 

  76. Gregersen H, Kassab G. Biomechanics of the gastrointestinal tract. Neurogastroenterol Motil. 1996;8(4):277–97.

    Article  CAS  PubMed  Google Scholar 

  77. Jones KL, Russo A, Stevens JE, et al. Predictors of delayed gastric emptying in diabetes. Diabetes Care. 2001;24(7):1264–9.

    Article  CAS  PubMed  Google Scholar 

  78. Samsom M, Salet GA, Roelofs JM, et al. Compliance of the proximal stomach and dyspeptic symptoms in patients with type I diabetes mellitus. Dig Dis Sci. 1995;40(9):2037–42.

    Article  CAS  PubMed  Google Scholar 

  79. Drewes AM, Gregersen H. Multimodal pain stimulation of the gastrointestinal tract. World J Gastroenterol. 2006;12(16):2477–86.

    PubMed Central  PubMed  Google Scholar 

  80. Drewes AM, Schipper KP, Dimcevski G, et al. Multimodal assessment of pain in the esophagus: a new experimental model. Am J Physiol Gastrointest Liver Physiol. 2002;283(1):G95–103.

    Article  CAS  PubMed  Google Scholar 

  81. Nicosia MA, Brasseur JG, Liu JB, et al. Local longitudinal muscle shortening of the human esophagus from high-frequency ultrasonography. Am J Physiol Gastrointest Liver Physiol. 2001;281(4):G1022–1033.

    CAS  PubMed  Google Scholar 

  82. McMahon BP, Frokjaer JB, Kunwald P, et al. The functional lumen imaging probe (FLIP) for evaluation of the esophagogastric junction. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G377–384.

    Article  CAS  PubMed  Google Scholar 

  83. Kumar A, Attaluri A, Hashmi S, et al. Visceral hypersensitivity and impaired accommodation in refractory diabetic gastroparesis. Neurogastroenterol Motil. 2008;20:635–42.

    Article  CAS  PubMed  Google Scholar 

  84. Stevens JE, Jones KL, Rayner CK, et al. Pathophysiology and pharmacotherapy of gastroparesis: current and future perspectives. Expert Opin Pharmacother. 2013;14(9):1171–86.

    Article  CAS  PubMed  Google Scholar 

  85. Hannig G, Tchernychev B, Kurtz CB, et al. Guanylate cyclase-C/cGMP: an emerging pathway in the regulation of visceral pain. Front Mol Neurosci. 2014;7:31.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Lin Z, Sarosiek I, Forster J, et al. Two-channel gastric pacing in patients with diabetic gastroparesis. Neurogastroenterol Motil. 2011;23(10):912–e396.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Sedan O, Sprecher E, Yarnitsky D. Vagal stomach afferents inhibit somatic pain perception. Pain. 2005;113(3):354–9.

    Article  PubMed  Google Scholar 

  88. Napadow V, Edwards RR, Cahalan CM, et al. Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. Pain Med. 2012;13(6):777–89.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Bak AM, Egefjord L, Gejl M, et al. Targeting amyloid-beta by glucagon-like peptide-1 (GLP-1) in Alzheimer’s disease and diabetes. Expert Opin Ther Targets. 2011;15:1153–62.

    Article  CAS  PubMed  Google Scholar 

  90. Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab. 2004;287:E199–206.

    Article  CAS  PubMed  Google Scholar 

  91. Holst JJ, Burcelin R, Nathanson E. Neuroprotective properties of GLP-1: theoretical and practical applications. Curr Med Res Opin. 2011;27:547–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

HG was supported in part by grants from the Chongqing Science and Technology Commission (cstc2013kjrc-ljrccj10003) and the National “111 Plan” Base (B06023). DL and JZ were supported by a grant from the Karen Elise Jensen foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Gregersen.

Ethics declarations

Conflict of Interest

Hans Gregersen has received a patent for a multimodal motility device that is broadly relevant to some of the work described in this article.

Donghua Liao, Anne Mohr Drewes, Asbjørn Mohr Drewes, and Jingbo Zhao declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Additional information

This article is part of the Topical Collection on Neurogastroenterology and Motility Disorders of the Gastrointestinal Tract

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregersen, H., Liao, D., Drewes, A.M. et al. Ravages of Diabetes on Gastrointestinal Sensory-Motor Function: Implications for Pathophysiology and Treatment. Curr Gastroenterol Rep 18, 6 (2016). https://doi.org/10.1007/s11894-015-0481-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-015-0481-x

Keywords

Navigation