Skip to main content

Advertisement

Log in

What the Jackson Heart Study Has Taught Us About Diabetes and Cardiovascular Disease in the African American Community: a 20-year Appreciation

  • Diabetes Epidemiology (S Albrecht, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The burden of cardiometabolic diseases such as cardiovascular disease (CVD) and type 2 diabetes (T2D) is pronounced among African Americans. Research has shown that behavioral, social, metabolic, psychosocial, and genetic risk factors of CVD and T2D are closely interwoven. Approximately 20 years ago, the Jackson Heart Study (JHS) was established to investigate this constellation of risk factors.

Recent Findings

Findings from neighborhood studies emphasize the importance of social cohesion and physical environment in the context CVD and T2D risk. Socioeconomic status factors such as income and education were significant predictors for CVD and T2D. Behavioral studies indicate that modifiable risk factors such as smoking, physical inactivity, lack of sleep, and poor nutrition are associated with CVD risk and all-cause mortality. Mental health also was found to be associated with CVD and T2D. Genetic influences are associated with disease etiology.

Summary

This review summarizes the joint contributions of CVD and cardiometabolic risk factors in an African American population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Barber S, Hickson DA, Wang X, Sims M, Nelson C, Diez-Roux AV. Neighborhood disadvantage, poor social conditions, and cardiovascular disease incidence among African American adults in the Jackson Heart Study. Am J Public Health. 2016;106(12):2219–26. https://doi.org/10.2105/AJPH.2016.303471.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barnett AH, Spiliopoulos AJ, Pyke DA, Stubbs WA, Burrin J, Alberti KG. Metabolic studies in unaffected co-twins of non-insulin-dependent diabetics. Br Med J (Clin Res Ed). 1981;282(6277):1656–8. https://doi.org/10.1136/bmj.282.6277.1656.

    Article  CAS  Google Scholar 

  3. Cardel MI, Min YI, Sims M, Musani SK, Dulin-Keita A, DeBoer MD, et al. Association of psychosocial stressors with metabolic syndrome severity among African Americans in the Jackson Heart Study. Psychoneuroendocrinology. 2018;90:141–7. https://doi.org/10.1016/j.psyneuen.2018.02.014.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Clark CR, Ommerborn MJ, Hickson DA, Grooms KN, Sims M, Taylor HA, et al. Neighborhood disadvantage, neighborhood safety and cardiometabolic risk factors in African Americans: biosocial associations in the Jackson Heart study. PLoS ONE. 2013;8(5): e63254. https://doi.org/10.1371/journal.pone.0063254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gebreab SY, Hickson DA, Sims M, Wyatt SB, Davis SK, Correa A, et al. Neighborhood social and physical environments and type 2 diabetes mellitus in African Americans: the Jackson Heart Study. Health Place. 2017;43:128–37. https://doi.org/10.1016/j.healthplace.2016.12.001.

    Article  PubMed  Google Scholar 

  6. Hawkes CH. Twin studies in diabetes mellitus. Diabet Med. 1997;14(5):347–52. https://doi.org/10.1002/(SICI)1096-9136(199705)14:5%3c347::AID-DIA332%3e3.0.CO;2-7.

    Article  CAS  PubMed  Google Scholar 

  7. Rotimi C, Cooper R, Cao G, Sundarum C, McGee D. Familial aggregation of cardiovascular diseases in African-American pedigrees. Genet Epidemiol. 1994;11(5):397–407. https://doi.org/10.1002/gepi.1370110502.

    Article  CAS  PubMed  Google Scholar 

  8. Fuqua SR, Wyatt SB, Andrew ME, Sarpong DF, Henderson FR, Cunningham MF, et al. Recruiting African-American research participation in the Jackson Heart Study: methods, response rates, and sample description. Ethn Dis. 2005;15(4 Suppl):6 S6-18 29.

    Google Scholar 

  9. Taylor HA, Wilson JG Jr, Jones DW, Sarpong DF, Srinivasan A, Garrison RJ, et al. Toward resolution of cardiovascular health disparities in African Americans: design and methods of the Jackson Heart Study. Ethn Dis. 2005;15(4 Suppl 6):S6 4-17.

    Google Scholar 

  10. Xiao YK, Graham G. Where we live: the impact of neighborhoods and community factors on cardiovascular health in the United States. Clin Cardiol. 2019;42(1):184–9. https://doi.org/10.1002/clc.23107.

    Article  PubMed  Google Scholar 

  11. Chen R, Ovbiagele B, Feng W. Diabetes and stroke: epidemiology, pathophysiology, pharmaceuticals and outcomes. Am J Med Sci. 2016;351(4):380–6. https://doi.org/10.1016/j.amjms.2016.01.011.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barber S, Hickson DA, Kawachi I, Subramanian SV, Earls F. Double-jeopardy: the joint impact of neighborhood disadvantage and low social cohesion on cumulative risk of disease among African American men and women in the Jackson Heart Study. Soc Sci Med. 2016;153:107–15. https://doi.org/10.1016/j.socscimed.2016.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Correa A, Greer S, Sims M. Assessing neighborhood-level effects on disparities in cardiovascular diseases. Circulation. 2015;131(2):124–7. https://doi.org/10.1161/CIRCULATIONAHA.114.013871.

    Article  PubMed  Google Scholar 

  14. Moore LV, Diez Roux AV, Nettleton JA, Jacobs DR Jr. Associations of the local food environment with diet quality–a comparison of assessments based on surveys and geographic information systems: the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2008;167(8):917–24. https://doi.org/10.1093/aje/kwm394.

    Article  PubMed  Google Scholar 

  15. Morland K, Diez Roux AV, Wing S. Supermarkets, other food stores, and obesity: the atherosclerosis risk in communities study. Am J Prev Med. 2006;30(4):333–9. https://doi.org/10.1016/j.amepre.2005.11.003.

    Article  PubMed  Google Scholar 

  16. Popkin BM, Duffey K, Gordon-Larsen P. Environmental influences on food choice, physical activity and energy balance. Physiol Behav. 2005;86(5):603–13. https://doi.org/10.1016/j.physbeh.2005.08.051.

    Article  CAS  PubMed  Google Scholar 

  17. Diez Roux AV, Mair C. Neighborhoods and health. Ann N Y Acad Sci. 2010;1186:125–45. https://doi.org/10.1111/j.1749-6632.2009.05333.x.

    Article  PubMed  Google Scholar 

  18. Gary TL, Safford MM, Gerzoff RB, Ettner SL, Karter AJ, Beckles GL, et al. Perception of neighborhood problems, health behaviors, and diabetes outcomes among adults with diabetes in managed care: the Translating Research Into Action for Diabetes (TRIAD) study. Diabetes Care. 2008;31(2):273–8. https://doi.org/10.2337/dc07-1111.

    Article  PubMed  Google Scholar 

  19. Moreno G, Morales LS, Nunez De, Jaimes F, Tseng CH, Isiordia M, Noguera C, et al. Neighborhood perceptions and health-related outcomes among Latinos with diabetes from a rural agricultural community. J Community Health. 2014;39(6):1077–84. https://doi.org/10.1007/s10900-014.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gebreab SY, Diez Roux AV, Brenner AB, Hickson DA, Sims M, Subramanyam M, et al. The impact of lifecourse socioeconomic position on cardiovascular disease events in African Americans: the Jackson Heart Study. J Am Heart Assoc. 2015;4(6): e001553. https://doi.org/10.1161/JAHA.114.001553.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Beckles GL, McKeever Bullard K, Saydah S, Imperatore G, Loustalot F, Correa A. Life course socioeconomic position, allostatic load, and incidence of type 2 diabetes among African American adults: the Jackson Heart Study, 2000–04 to 2012. Ethn Dis. 2019;29(1):39–46. https://doi.org/10.18865/ed.29.1.39.

    Article  PubMed  PubMed Central  Google Scholar 

  22. • Foraker RE, Bush C, Greiner MA, Sims M, Henderson K, Smith S et al. 2019 Distribution of cardiovascular health by individual- and neighborhood-level socioeconomic status: findings from the Jackson Heart Study. Glob Heart 14(3):241–50. doi:https://doi.org/10.1016/j.gheart.2019.04.007. Findings from this study is important for CVD awareness in underserved and high risk populations.

  23. Oshunbade AA, Yimer WK, Valle KA, Clark D 3rd, Kamimura D, White WB, et al. Cigarette smoking and incident stroke in blacks of the Jackson Heart Study. J Am Heart Assoc. 2020;9(12): e014990. https://doi.org/10.1161/JAHA.119.014990.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kamimura D, Cain LR, Mentz RJ, White WB, Blaha MJ, DeFilippis AP, et al. Cigarette smoking and incident heart failure: insights from the Jackson Heart Study. Circulation. 2018;137(24):2572–82. https://doi.org/10.1161/CIRCULATIONAHA.117.031912.

    Article  PubMed  PubMed Central  Google Scholar 

  25. White WB, Cain LR, Benjamin EJ, DeFilippis AP, Blaha MJ, Wang W et al. 2018 High-intensity cigarette smoking is associated with incident diabetes mellitus in black adults: the Jackson Heart Study. J Am Heart Assoc 7(2). doi:https://doi.org/10.1161/JAHA.117.007413.

  26. Diaz KM, Booth JN 3rd, Seals SR, Abdalla M, Dubbert PM, Sims M, et al. Physical activity and incident hypertension in African Americans: the Jackson Heart Study. Hypertension. 2017;69(3):421–7. https://doi.org/10.1161/HYPERTENSIONAHA.116.08398.

    Article  CAS  PubMed  Google Scholar 

  27. Koo PGA, Choudhary G, Wu WC, Wang W, McCool FD, Eaton CB. Prospective association of physical activity and heart failure hospitalizations among black adults with normal ejection fraction: the Jackson Heart Study. J Am Heart Assoc. 2017;7(69):e006107.

    Google Scholar 

  28. Garcia JM, Duran AT, Schwartz JE, Booth JN 3rd, Hooker SP, Willey JZ, et al. Types of sedentary behavior and risk of cardiovascular events and mortality in blacks: the Jackson Heart Study. J Am Heart Assoc. 2019;8(13): e010406. https://doi.org/10.1161/JAHA.118.010406.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Taveira TH, Ouellette D, Gulum A, Choudhary G, Eaton CB, Liu S, et al. Relation of magnesium intake with cardiac function and heart failure hospitalizations in black adults: the Jackson Heart Study. Circ Heart Fail. 2016;9(4): e002698. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002698.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Djousse L, Petrone AB, Hickson DA, Talegawkar SA, Dubbert PM, Taylor H, et al. Egg consumption and risk of type 2 diabetes among African Americans: the Jackson Heart Study. Clin Nutr. 2016;35(3):679–84. https://doi.org/10.1016/j.clnu.2015.04.016.

    Article  PubMed  Google Scholar 

  31. Zhong VW, Van Horn L, Cornelis MC, Wilkins JT, Ning H, Carnethon MR, et al. Associations of dietary cholesterol or egg consumption with incident cardiovascular disease and mortality. JAMA. 2019;321(11):1081–95. https://doi.org/10.1001/jama.2019.1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Millard HR, Musani SK, Dibaba DT, Talegawkar SA, Taylor HA, Tucker KL, et al. Dietary choline and betaine; associations with subclinical markers of cardiovascular disease risk and incidence of CVD, coronary heart disease and stroke: the Jackson Heart Study. Eur J Nutr. 2018;57(1):51–60. https://doi.org/10.1007/s00394-016-1296-8.

    Article  CAS  PubMed  Google Scholar 

  33. Butler MJ, Spruill TM, Johnson DA, Redline S, Sims M, Jenkins BC, et al. Suboptimal sleep and incident cardiovascular disease among African Americans in the Jackson Heart Study (JHS). Sleep Med. 2020;76:89–97. https://doi.org/10.1016/j.sleep.2020.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Effoe VS, Carnethon MR, Echouffo-Tcheugui JB, Chen H, Joseph JJ, Norwood AF et al. The American Heart Association ideal cardiovascular health and incident type 2 diabetes mellitus among blacks: the Jackson Heart Study. J Am Heart Assoc. 2017;6(6). doi:https://doi.org/10.1161/JAHA.116.005008.

  35. Ommerborn MJ, Blackshear CT, Hickson DA, Griswold ME, Kwatra J, Djousse L, et al. Ideal cardiovascular health and incident cardiovascular events: the Jackson Heart Study. Am J Prev Med. 2016;51(4):502–6. https://doi.org/10.1016/j.amepre.2016.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Joseph JJ, Echouffo-Tcheugui JB, Talegawkar SA, Effoe VS, Okhomina V, Carnethon MR, et al. Modifiable lifestyle risk factors and incident diabetes in African Americans. Am J Prev Med. 2017;53(5):e165–74. https://doi.org/10.1016/j.amepre.2017.06.018.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Whitfield KENS, Bruce MA, Sims M, Aiken-Morgan AT, Thorpe RJ. Stress, longevity and cardiovascular outcomes among African American families in the Jackson Heart Study. Ethn Dis. 2014;24(4):456–61.

    PubMed  Google Scholar 

  38. Moran KEOM, Blackshear CT, Sims M, Clark CR. Financial stress and risk of coronary heart disease in the Jackson Heart Study. Am J Prev Med. 2019;56(2):224–31.

    Article  Google Scholar 

  39. Gillespie SL, Anderson CM, Zhao S, Tan Y, Kline D, Brock G, et al. Allostatic load in the association of depressive symptoms with incident coronary heart disease: the Jackson Heart Study. Psychoneuroendocrinology. 2019;109: 104369. https://doi.org/10.1016/j.psyneuen.2019.06.020.

    Article  PubMed  PubMed Central  Google Scholar 

  40. O’Brien ECGM, Sims M, Hardy NC, Wang W, Shahar E, Hernandez AF, Curtis LH. Depressive symptoms and risk of cardiovascular events in blacks: findings from the Jackson Heart Study. Circ Cardiovasc Qual Outcomes. 2015;8(6):552–9. https://doi.org/10.1161/CIRCOUTCOMES.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dunlay SM, Lippmann SJ, Greiner MA, O’Brien EC, Chamberlain AM, Mentz RJ, et al. Perceived discrimination and cardiovascular outcomes in older African Americans: insights from the Jackson Heart Study. Mayo Clin Proc. 2017;92(5):699–709. https://doi.org/10.1016/j.mayocp.2017.01.024.

    Article  PubMed  Google Scholar 

  42. Glover LM, Bertoni AG, Golden SH, Baltrus P, Min YI, Carnethon MR, et al. Sex differences in the association of psychosocial resources with prevalent type 2 diabetes among African Americans: The Jackson Heart Study. J Diabetes Complications. 2019;33(2):113–7. https://doi.org/10.1016/j.jdiacomp.2018.11.005.

    Article  PubMed  Google Scholar 

  43. Yano Y, Tanner RM, Sakhuja S, Jaeger BC, Booth JN 3rd, Abdalla M, et al. Association of daytime and nighttime blood pressure with cardiovascular disease events among African American individuals. JAMA Cardiol. 2019;4(9):910–7. https://doi.org/10.1001/jamacardio.2019.2845.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Booth JN 3rd, Diaz KM, Seals SR, Sims M, Ravenell J, Muntner P, et al. Masked hypertension and cardiovascular disease events in a prospective cohort of blacks: the Jackson Heart Study. Hypertension. 2016;68(2):501–10. https://doi.org/10.1161/HYPERTENSIONAHA.116.07553.

    Article  CAS  PubMed  Google Scholar 

  45. DeBoer MDFS, Sims M, Musani SK, Gurka MJ. Risk of ischemic stroke increases over the spectrum of metabolic syndrome severity. Stroke. 2020;51(8):2548–52.

    Article  Google Scholar 

  46. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14:353–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilson TW, Grim CE. Biohistory of slavery and blood pressure differences in blacks today. A hypothesis Hypertension. 1991;17(1 Suppl):I122–8. https://doi.org/10.1161/01.hyp.17.1_suppl.i122.

    Article  CAS  PubMed  Google Scholar 

  48. Wilson JG, Rotimi CN, Ekunwe L, Royal CD, Crump ME, Wyatt SB, et al. Study design for genetic analysis in the Jackson Heart Study. Ethn Dis. 2005;15(4 Suppl 6):S6 30-7.

    Google Scholar 

  49. Deo RC, Reich D, Tandon A, Akylbekova E, Patterson N, Waliszewska A, et al. Genetic differences between the determinants of lipid profile phenotypes in African and European Americans: the Jackson Heart Study. PLoS Genet. 2009;5(1): e1000342. https://doi.org/10.1371/journal.pgen.1000342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McKeigue PM. Mapping genes that underlie ethnic differences in disease risk: methods for detecting linkage in admixed populations, by conditioning on parental admixture. Am J Hum Genet. 1998;63(1):241–51. https://doi.org/10.1086/301908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nalls MA, Wilson JG, Patterson NJ, Tandon A, Zmuda JM, Huntsman S, et al. Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies. Am J Hum Genet. 2008;82(1):81–7. https://doi.org/10.1016/j.ajhg.2007.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng CY, Reich D, Haiman CA, Tandon A, Patterson N, Selvin E, et al. African ancestry and its correlation to type 2 diabetes in African Americans: a genetic admixture analysis in three U.S. population cohorts. PLoS One. 2012;7(3):e32840. https://doi.org/10.1371/journal.pone.0032840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deo RC, Wilson JG, Xing C, Lawson K, Kao WH, Reich D, et al. Single-nucleotide polymorphisms in LPA explain most of the ancestry-specific variation in Lp(a) levels in African Americans. PLoS ONE. 2011;6(1): e14581. https://doi.org/10.1371/journal.pone.0014581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee SR, Prasad A, Choi YS, Xing C, Clopton P, Witztum JL, et al. LPA gene, ethnicity, and cardiovascular events. Circulation. 2017;135(3):251–63. https://doi.org/10.1161/CIRCULATIONAHA.116.024611.

    Article  CAS  PubMed  Google Scholar 

  55. He KY, Li X, Kelly TN, Liang J, Cade BE, Assimes TL, et al. Leveraging linkage evidence to identify low-frequency and rare variants on 16p13 associated with blood pressure using TOPMed whole genome sequencing data. Hum Genet. 2019;138(2):199–210. https://doi.org/10.1007/s00439-019-01975-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Polfus LM, Raffield LM, Wheeler MM, Tracy RP, Lange LA, Lettre G, et al. Whole genome sequence association with E-selectin levels reveals loss-of-function variant in African Americans. Hum Mol Genet. 2019;28(3):515–23. https://doi.org/10.1093/hmg/ddy360.

    Article  CAS  PubMed  Google Scholar 

  57. Raffield LM, Zakai NA, Duan Q, Laurie C, Smith JD, Irvin MR, et al. D-Dimer in African Americans: whole genome sequence analysis and relationship to cardiovascular disease risk in the Jackson Heart Study. Arterioscler Thromb Vasc Biol. 2017;37(11):2220–7. https://doi.org/10.1161/ATVBAHA.117.310073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sherman RM, Forman J, Antonescu V, Puiu D, Daya M, Rafaels N, et al. Assembly of a pangenome from deep sequencing of 910 humans of African descent. Nat Genet. 2019;51(1):30–5. https://doi.org/10.1038/s41588-018-0273-y.

    Article  CAS  PubMed  Google Scholar 

  59. Lettre G, Palmer CD, Young T, Ejebe KG, Allayee H, Benjamin EJ, et al. Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe Project. PLoS Genet. 2011;7(2): e1001300. https://doi.org/10.1371/journal.pgen.1001300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu S, Wilson JG, Jiang F, Griswold M, Correa A, Mei H. Multi-variant study of obesity risk genes in African Americans: The Jackson Heart Study. Gene. 2016;593(2):315–21. https://doi.org/10.1016/j.gene.2016.08.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Musunuru K, Lettre G, Young T, Farlow DN, Pirruccello JP, Ejebe KG, et al. Candidate gene association resource (CARe): design, methods, and proof of concept. Circ Cardiovasc Genet. 2010;3(3):267–75. https://doi.org/10.1161/CIRCGENETICS.109.882696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Keating BJ, Tischfield S, Murray SS, Bhangale T, Price TS, Glessner JT, et al. Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies. PLoS ONE. 2008;3(10): e3583. https://doi.org/10.1371/journal.pone.0003583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grove ML, Yu B, Cochran BJ, Haritunians T, Bis JC, Taylor KD, et al. Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium. PLoS ONE. 2013;8(7): e68095. https://doi.org/10.1371/journal.pone.0068095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ng MC, Saxena R, Li J, Palmer ND, Dimitrov L, Xu J, et al. Transferability and fine mapping of type 2 diabetes loci in African Americans: the Candidate Gene Association Resource Plus Study. Diabetes. 2013;62(3):965–76. https://doi.org/10.2337/db12-0266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Palmer ND, Hester JM, An SS, Adeyemo A, Rotimi C, Langefeld CD, et al. Resequencing and analysis of variation in the TCF7L2 gene in African Americans suggests that SNP rs7903146 is the causal diabetes susceptibility variant. Diabetes. 2011;60(2):662–8. https://doi.org/10.2337/db10-0134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sale MM, Smith SG, Mychaleckyj JC, Keene KL, Langefeld CD, Leak TS, et al. Variants of the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in an African- American population enriched for nephropathy. Diabetes. 2007;56(10):2638–42. https://doi.org/10.2337/db07-0012.

    Article  CAS  PubMed  Google Scholar 

  67. Ding W, Xu L, Zhang L, Han Z, Jiang Q, Wang Z, et al. Meta-analysis of association between TCF7L2 polymorphism rs7903146 and type 2 diabetes mellitus. BMC Med Genet. 2018;19(1):38. https://doi.org/10.1186/s12881-018-0553-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–5. https://doi.org/10.1126/science.1142382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Assmann TS, Duarte GC, Rheinheimer J, Cruz LA, Canani LH, Crispim D. The TCF7L2 rs7903146 (C/T) polymorphism is associated with risk to type 2 diabetes mellitus in Southern-Brazil. Arq Bras Endocrinol Metabol. 2014;58(9):918–25. https://doi.org/10.1590/0004-2730000003510.

    Article  PubMed  Google Scholar 

  70. Cauchi S, El Achhab Y, Choquet H, Dina C, Krempler F, Weitgasser R, et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med (Berl). 2007;85(7):777–82. https://doi.org/10.1007/s00109-007-0203-4.

    Article  CAS  Google Scholar 

  71. Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T, Nakashima E, Ohnaka K, et al. Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes. 2009;58(7):1690–9. https://doi.org/10.2337/db08-1494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ng MC, Shriner D, Chen BH, Li J, Chen WM, Guo X, et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 2014;10(8): e1004517. https://doi.org/10.1371/journal.pgen.1004517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579–89. https://doi.org/10.1038/ng.609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hemminki K, Forsti A, Bermejo JL. The 'common disease-common variant’ hypothesis and familial risks. PLoS ONE. 2008;3(6): e2504. https://doi.org/10.1371/journal.pone.0002504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337(6090):64–9. https://doi.org/10.1126/science.1219240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zilbermint M, Gaye A, Berthon A, Hannah-Shmouni F, Faucz FR, Lodish MB, et al. ARMC 5 variants and risk of hypertension in blacks: MH- GRID study. J Am Heart Assoc. 2019;8(14): e012508. https://doi.org/10.1161/JAHA.119.012508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Joseph JJ, Zhou X, Zilbermint M, Stratakis CA, Faucz FR, Lodish MB et al. The association of ARMC5 with the renin-angiotensin-aldosterone system, blood pressure, and glycemia in African Americans. J Clin Endocrinol Metab. 2020;105(8). doi:https://doi.org/10.1210/clinem/dgaa290.

  78. Zilbermint M, Xekouki P, Faucz FR, Berthon A, Gkourogianni A, Schernthaner-Reiter MH, et al. Primary aldosteronism and ARMC5 variants. J Clin Endocrinol Metab. 2015;100(6):E900–9. https://doi.org/10.1210/jc.2014-4167.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kowalski MH, Qian H, Hou Z, Rosen JD, Tapia AL, Shan Y, et al. Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genet. 2019;15(12): e1008500. https://doi.org/10.1371/journal.pgen.1008500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin BM, Grinde KE, Brody JA, Breeze CE, Raffield LM, Mychaleckyj JC, et al. Whole genome sequence analyses of eGFR in 23,732 people representing multiple ancestries in the NHLBI trans-omics for precision medicine (TOPMed) consortium. EBioMedicine. 2021;63: 103157. https://doi.org/10.1016/j.ebiom.2020.103157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sarnowski C, Leong A, Raffield LM, Wu P, de Vries PS, DiCorpo D, et al. Impact of rare and common genetic variants on diabetes diagnosis by hemoglobin A1c in multi-ancestry cohorts: the Trans-Omics for Precision Medicine Program. Am J Hum Genet. 2019;105(4):706–18. https://doi.org/10.1016/j.ajhg.2019.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Black PH, Garbutt LD. Stress, inflammation and cardiovascular disease. J Psychosom Res. 2002;52(1):1–23. https://doi.org/10.1016/s0022-3999(01)00302-6.

    Article  PubMed  Google Scholar 

  83. Steptoe A, Kivimaki M. Stress and cardiovascular disease. Nat Rev Cardiol. 2012;9(6):360–70. https://doi.org/10.1038/nrcardio.2012.45.

    Article  CAS  PubMed  Google Scholar 

  84. Festa A, D’Agostino R Jr, Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2000;102(1):42–7. https://doi.org/10.1161/01.cir.102.1.42.

    Article  CAS  PubMed  Google Scholar 

  85. Barcelona de Mendoza V, Huang Y, Crusto CA, Sun YV, Taylor JY. Perceived racial discrimination and DNA methylation among African American women in the InterGEN Study. Biol Res Nurs. 2018;20(2):145–52. https://doi.org/10.1177/1099800417748759.

    Article  CAS  PubMed  Google Scholar 

  86. Sun YV, Hu YJ. Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv Genet. 2016;93:147–90. https://doi.org/10.1016/bs.adgen.2015.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the staff and participants of the Jackson Heart Study (JHS). JHS is supported and conducted in collaboration with Jackson State University (HHSN268201800013I), Tougaloo College (HHSN268201800014I), the Mississippi State Department of Health (HHSN268201800015I), and the University of Mississippi Medical Center (HHSN268201800010I, HHSN268201800011I and HHSN268201800012I) contracts from the National Heart, Lung, and Blood Institute (NHLBI) and the National Institute on Minority Health and Health Disparities (NIMHD). The views expressed in this article are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the US Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tennille Leak-Johnson.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Diabetes Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leak-Johnson, T., Yan, F. & Daniels, P. What the Jackson Heart Study Has Taught Us About Diabetes and Cardiovascular Disease in the African American Community: a 20-year Appreciation. Curr Diab Rep 21, 39 (2021). https://doi.org/10.1007/s11892-021-01413-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11892-021-01413-4

Keywords

Navigation