Skip to main content
Log in

The Effect of Age on the Progression and Severity of Type 1 Diabetes: Potential Effects on Disease Mechanisms

  • Pathogenesis of Type 1 Diabetes (A Pugliese and SJ Richardson, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To explore the impact of age on type 1 diabetes (T1D) pathogenesis.

Recent Findings

Children progress more rapidly from autoantibody positivity to T1D and have lower C-peptide levels compared to adults. In histological analysis of post-mortem pancreata, younger age of diagnosis is associated with reduced numbers of insulin containing islets and a hyper-immune CD20hi infiltrate. Moreover compared to adults, children exhibit decreased immune regulatory function and increased engagement and trafficking of autoreactive CD8+ T cells, and age-related differences in β cell vulnerability may also contribute to the more aggressive immune phenotype observed in children. To account for some of these differences, HLA and non-HLA genetic loci that influence multiple disease characteristics, including age of onset, are being increasingly characterized.

Summary

The exception of T1D as an autoimmune disease more prevalent in children than adults results from a combination of immune, metabolic, and genetic factors. Age-related differences in T1D pathology have important implications for better tailoring of immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391(10138):2449–62.

    Article  PubMed  Google Scholar 

  2. Stanescu DE, Lord K, Lipman TH. The epidemiology of type 1 diabetes in children. Endocrinol Metab Clin N Am. 2012;41(4):679–94.

    Article  Google Scholar 

  3. Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ. Epidemiology of type 1 diabetes. Endocrinol Metab Clin N Am. 2010;39(3):481–97.

    Article  Google Scholar 

  4. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N Engl J Med. 2017;376(15):1419–29.

    Article  PubMed  Google Scholar 

  5. Chobot A, Polanska J, Brandt A, Deja G, Glowinska-Olszewska B, Pilecki O, et al. Updated 24-year trend of type 1 diabetes incidence in children in Poland reveals a sinusoidal pattern and sustained increase. Diabet Med. 2017;34(9):1252–8.

    Article  CAS  PubMed  Google Scholar 

  6. Lipman TH, Levitt Katz LE, Ratcliffe SJ, Murphy KM, Aguilar A, Rezvani I, et al. Increasing incidence of type 1 diabetes in youth: twenty years of the Philadelphia pediatric diabetes registry. Diabetes Care. 2013;36(6):1597–603.

    Article  PubMed  Google Scholar 

  7. Ziegler AG, Bonifacio E, Group B-BS. Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes. Diabetologia. 2012;55(7):1937–43.

    Article  CAS  Google Scholar 

  8. Krischer JP, Lynch KF, Lernmark A, Hagopian WA, Rewers MJ, She JX, et al. Genetic and environmental interactions modify the risk of diabetes-related autoimmunity by 6 years of age: the TEDDY study. Diabetes Care. 2017;40(9):1194–202.

    Article  PubMed  Google Scholar 

  9. Krischer JP, Liu X, Lernmark A, Hagopian WA, Rewers MJ, She JX, et al. The influence of type 1 diabetes genetic susceptibility regions, age, sex, and family history on the progression from multiple autoantibodies to type 1 diabetes: a TEDDY study report. Diabetes. 2017;66(12):3122–9.

    Article  CAS  Google Scholar 

  10. Ilonen J, Hammais A, Laine AP, Lempainen J, Vaarala O, Veijola R, et al. Patterns of beta-cell autoantibody appearance and genetic associations during the first years of life. Diabetes. 2013;62(10):3636–40.

    Article  CAS  PubMed  Google Scholar 

  11. Battaglia M, Anderson MS, Buckner JH, Geyer SM, Gottlieb PA, Kay TWH, et al. Understanding and preventing type 1 diabetes through the unique working model of TrialNet. Diabetologia. 2017;60(11):2139–47.

    Article  PubMed  Google Scholar 

  12. Greenbaum CJ, Speake C, Krischer J, Buckner J, Gottlieb PA, Schatz DA, et al. Strength in numbers: opportunities for enhancing the development of effective treatments for type 1 diabetes-the TrialNet experience. Diabetes. 2018;67(7):1216–25.

    Article  PubMed  Google Scholar 

  13. Mahon JL, Sosenko JM, Rafkin-Mervis L, Krause-Steinrauf H, Lachin JM, Thompson C, et al. The TrialNet natural history study of the development of type 1 diabetes: objectives, design, and initial results. Pediatr Diabetes. 2009;10(2):97–104.

    Article  PubMed  Google Scholar 

  14. Writing Committee for the Type 1 Diabetes TrialNet Oral Insulin Study G, Krischer JP, Schatz DA, Bundy B, Skyler JS, Greenbaum CJ. Effect of oral insulin on prevention of diabetes in relatives of patients with type 1 diabetes: a randomized clinical trial. JAMA. 2017;318(19):1891–902.

    Article  Google Scholar 

  15. Sosenko JM, Palmer JP, Rafkin-Mervis L, Krischer JP, Cuthbertson D, Mahon J, et al. Incident dysglycemia and progression to type 1 diabetes among participants in the diabetes prevention trial-type 1. Diabetes Care. 2009;32(9):1603–7.

    Article  PubMed  Google Scholar 

  16. Wherrett DK, Chiang JL, Delamater AM, DiMeglio LA, Gitelman SE, Gottlieb PA, et al. Defining pathways for development of disease-modifying therapies in children with type 1 diabetes: a consensus report. Diabetes Care. 2015;38(10):1975–85.

    Article  CAS  PubMed  Google Scholar 

  17. Sosenko JM, Skyler JS, Mahon J, Krischer JP, Beam CA, Boulware DC, et al. Validation of the diabetes prevention trial-type 1 risk score in the TrialNet natural history study. Diabetes Care. 2011;34(8):1785–7.

    Article  PubMed  Google Scholar 

  18. Sosenko JM, Skyler JS, Mahon J, Krischer JP, Beam CA, Boulware DC, et al. The application of the diabetes prevention trial-type 1 risk score for identifying a preclinical state of type 1 diabetes. Diabetes Care. 2012;35(7):1552–5.

    Article  PubMed  Google Scholar 

  19. Sosenko JM, Palmer JP, Rafkin LE, Krischer JP, Cuthbertson D, Greenbaum CJ, et al. Trends of earlier and later responses of C-peptide to oral glucose challenges with progression to type 1 diabetes in diabetes prevention trial-type 1 participants. Diabetes Care. 2010;33(3):620–5.

    Article  CAS  PubMed  Google Scholar 

  20. Sosenko JM, Palmer JP, Greenbaum CJ, Mahon J, Cowie C, Krischer JP, et al. Patterns of metabolic progression to type 1 diabetes in the diabetes prevention trial-type 1. Diabetes Care. 2006;29(3):643–9.

    Article  Google Scholar 

  21. Evans-Molina C, Sims EK, DiMeglio LA, Ismail HM, Steck AK, Palmer JP, et al. β cell dysfunction exists more than 5 years before type 1 diabetes diagnosis. JCI Insight. 2018;3(15):e120877.

  22. Snorgaard O, Lassen LH, Binder C. Homogeneity in pattern of decline of beta-cell function in IDDM. Prospective study of 204 consecutive cases followed for 7.4 yr. Diabetes Care. 1992;15(8):1009–13.

    Article  CAS  Google Scholar 

  23. Sosenko JM, Geyer S, Skyler JS, Rafkin LE, Ismail HM, Libman IM, et al. The influence of body mass index and age on C-peptide at the diagnosis of type 1 diabetes in children who participated in the diabetes prevention trial-type 1. Pediatr Diabetes. 2018;19(3):403–9.

    Article  CAS  Google Scholar 

  24. Steele C, Hagopian WA, Gitelman S, Masharani U, Cavaghan M, Rother KI, et al. Insulin secretion in type 1 diabetes. Diabetes. 2004;53(2):426–33.

    Article  CAS  Google Scholar 

  25. Rodacki M, Pereira JR, Nabuco de Oliveira AM, Barone B, Mac Dowell R, Perricelli P, et al. Ethnicity and young age influence the frequency of diabetic ketoacidosis at the onset of type 1 diabetes. Diabetes Res Clin Pract. 2007;78(2):259–62.

    Article  CAS  Google Scholar 

  26. Hekkala A, Reunanen A, Koski M, Knip M, Veijola R. Finnish pediatric diabetes R. Age-related differences in the frequency of ketoacidosis at diagnosis of type 1 diabetes in children and adolescents. Diabetes Care. 2010;33(7):1500–2.

    Article  PubMed  Google Scholar 

  27. Dost A, Herbst A, Kintzel K, Haberland H, Roth CL, Gortner L, et al. Shorter remission period in young versus older children with diabetes mellitus type 1. Exp Clin Endocrinol Diabetes. 2007;115(1):33–7.

    Article  CAS  Google Scholar 

  28. Redondo MJ, Rodriguez LM, Escalante M, O'Brian Smith E, Balasubramanyam A, Haymond MW. Beta cell function and BMI in ethnically diverse children with newly diagnosed autoimmune type 1 diabetes. Pediatr Diabetes. 2012;13(7):564–71.

    Article  CAS  Google Scholar 

  29. Greenbaum CJ, Beam CA, Boulware D, Gitelman SE, Gottlieb PA, Herold KC, et al. Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite type 1 diabetes TrialNet data. Diabetes. 2012;61(8):2066–73.

    Article  CAS  PubMed  Google Scholar 

  30. Hao W, Gitelman S, DiMeglio LA, Boulware D, Greenbaum CJ. Type 1 diabetes TrialNet study G. Fall in C-peptide during first 4 years from diagnosis of type 1 diabetes: variable relation to age, HbA1c, and insulin dose. Diabetes Care. 2016;39(10):1664–70.

    Article  CAS  PubMed  Google Scholar 

  31. Shields BM, McDonald TJ, Oram R, Hill A, Hudson M, Leete P, et al. C-peptide decline in type 1 diabetes has two phases: an initial exponential fall and a subsequent stable phase. Diabetes Care. 2018;41(7):1486–92.

    Article  PubMed  Google Scholar 

  32. Wallensteen M, Dahlquist G, Persson B, Landin-Olsson M, Lernmark A, Sundkvist G, et al. Factors influencing the magnitude, duration, and rate of fall of B-cell function in type 1 (insulin-dependent) diabetic children followed for two years from their clinical diagnosis. Diabetologia. 1988;31(9):664–9.

    Article  CAS  PubMed  Google Scholar 

  33. Foulis AK, Liddle CN, Farquharson MA, Richmond JA, Weir RS. The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia. 1986;29(5):267–74.

    Article  CAS  PubMed  Google Scholar 

  34. Campbell-Thompson M, Wasserfall C, Kaddis J, Albanese-O'Neill A, Staeva T, Nierras C, et al. Network for pancreatic organ donors with diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes Metab Res Rev. 2012;28(7):608–17.

    Article  PubMed  Google Scholar 

  35. Krogvold L, Edwin B, Buanes T, Ludvigsson J, Korsgren O, Hyoty H, et al. Pancreatic biopsy by minimal tail resection in live adult patients at the onset of type 1 diabetes: experiences from the DiViD study. Diabetologia. 2014;57(4):841–3.

    Article  PubMed  Google Scholar 

  36. Saisho Y, Butler AE, Manesso E, Elashoff D, Rizza RA, Butler PC. Beta-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care. 2013;36(1):111–7.

    Article  PubMed  Google Scholar 

  37. Meier JJ, Butler AE, Saisho Y, Monchamp T, Galasso R, Bhushan A, et al. Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes. 2008;57(6):1584–94.

    Article  CAS  PubMed  Google Scholar 

  38. • Lam CJ, Jacobson DR, Rankin MM, Cox AR, Kushner JA. beta cells persist in T1D pancreata without evidence of ongoing beta-cell turnover or neogenesis. J Clin Endocrinol Metab. 2017;102(8):2647–59. This study examines the persistence of pancreatic β cells in donors with longstanding Type 1 diabetes donors from the nPOD collection and suggests that this is not due to β cell regeneration, small islet/ ductal neogenesis or transdifferentiation from other islet cell types.

    Article  PubMed  Google Scholar 

  39. Gregg BE, Moore PC, Demozay D, Hall BA, Li M, Husain A, et al. Formation of a human beta-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metab. 2012;97(9):3197–206.

    Article  CAS  PubMed  Google Scholar 

  40. Striegel DA, Hara M, Periwal V. Adaptation of pancreatic islet cyto-architecture during development. Phys Biol. 2016;13(2):025004.

    Article  PubMed  Google Scholar 

  41. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A. 2006;103(7):2334–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kilimnik G, Jo J, Periwal V, Zielinski MC, Hara M. Quantification of islet size and architecture. Islets. 2012;4(2):167–72.

    Article  PubMed  Google Scholar 

  43. In't VP. Insulitis in human type 1 diabetes: the quest for an elusive lesion. Islets. 2011;3(4):131–8.

    Article  Google Scholar 

  44. Campbell-Thompson M, Fu A, Kaddis JS, Wasserfall C, Schatz DA, Pugliese A, et al. Insulitis and beta-cell mass in the natural history of type 1 diabetes. Diabetes. 2016;65(3):719-31.

  45. Arif S, Leete P, Nguyen V, Marks K, Nor NM, Estorninho M, et al. Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes. Diabetes. 2014;63(11):3835–45.

    Article  CAS  PubMed  Google Scholar 

  46. •• Leete P, Willcox A, Krogvold L, Dahl-Jørgensen K, Foulis AK, Richardson SJ, et al. Differential insulitic profiles determine the extent of beta cell destruction and the age at onset of type 1 diabetes. Diabetes. 2016;65(6):1362–9. This study demonstrates that age of onset of Type 1 diabetes (in recent-onset cases) is associated with different insulitic islet immune cell profiles and extent of pancreatic β-cell destruction.

    Article  CAS  Google Scholar 

  47. Klinke DJ 2nd. Extent of beta cell destruction is important but insufficient to predict the onset of type 1 diabetes mellitus. PLoS One. 2008;3(1):e1374.

    Article  PubMed  Google Scholar 

  48. Keenan HA, Sun JK, Levine J, Doria A, Aiello LP, Eisenbarth G, et al. Residual insulin production and pancreatic beta-cell turnover after 50 years of diabetes: Joslin medalist study. Diabetes. 2010;59(11):2846–53.

    Article  CAS  PubMed  Google Scholar 

  49. Krogvold L, Skog O, Sundstrom G, Edwin B, Buanes T, Hanssen KF, et al. Function of isolated pancreatic islets from patients at onset of type 1 diabetes; Insulin secretion can be restored after some days in a non-diabetogenic environment in vitro. Results from the DiViD study. Diabetes. 2015;64(7):2506–12

    Article  CAS  PubMed  Google Scholar 

  50. Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  51. Campbell-Thompson ML, Atkinson MA, Butler AE, Chapman NM, Frisk G, Gianani R, et al. The diagnosis of insulitis in human type 1 diabetes. Diabetologia. 2013;56(11):2541–3.

    Article  CAS  Google Scholar 

  52. Campbell-Thompson ML, Atkinson MA, Butler AE, Giepmans BN, von Herrath MG, Hyoty H, et al. Re-addressing the 2013 consensus guidelines for the diagnosis of insulitis in human type 1 diabetes: is change necessary? Diabetologia. 2017;60(4):753–5.

    Article  PubMed  Google Scholar 

  53. •• Culina S, Lalanne AI, Afonso G, Cerosaletti K, Pinto S, Sebastiani G, et al. Islet-reactive CD8+ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci Immunol. 2018;3(20):eaao4013. This paper proposes that a universal state of ‘benign’ autoimmunity is present in all individuals. The key difference between the islet-reactive CD8+ T cells of T1D and healthy donors is not in their circulating frequency or history of antigen encounter, but in their capacity to home to the pancreas.

    Article  PubMed  Google Scholar 

  54. Gonzalez-Duque S, Azoury ME, Colli ML, Afonso G, Turatsinze J-V, Nigi L, et al. Conventional and neo-antigenic peptides presented by beta cells are targeted by circulating naïve CD8+ T cells in type 1 diabetic and healthy donors. Cell Metab. 2018. https://doi.org/10.1016/j.cmet.2018.07.007

  55. Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest. 2004;113(3):451–63.

    Article  CAS  PubMed  Google Scholar 

  56. Brusko TM, Wasserfall CH, Clare-Salzler MJ, Schatz DA, Atkinson MA. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes. 2005;54(5):1407–14.

    Article  CAS  PubMed  Google Scholar 

  57. Legoux FP, Lim JB, Cauley AW, Dikiy S, Ertelt J, Mariani TJ, et al. CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity. 2015;43(5):896–908.

    Article  CAS  PubMed  Google Scholar 

  58. Malhotra D, Linehan JL, Dileepan T, Lee YJ, Purtha WE, Lu JV, et al. Tolerance is established in polyclonal CD4(+) T cells by distinct mechanisms, according to self-peptide expression patterns. Nat Immunol. 2016;17(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  59. Sims EK, Chaudhry Z, Watkins R, Syed F, Blum J, Ouyang F, et al. Elevations in the fasting serum Proinsulin-to-C-peptide ratio precede the onset of type 1 diabetes. Diabetes Care. 2016;39(9):1519–26.

    Article  CAS  PubMed  Google Scholar 

  60. Fava D, Gardner S, Pyke D, Leslie RD. Evidence that the age at diagnosis of IDDM is genetically determined. Diabetes Care. 1998;21(6):925–9.

    Article  CAS  Google Scholar 

  61. Redondo MJ, Yu L, Hawa M, Mackenzie T, Pyke DA, Eisenbarth GS, et al. Heterogeneity of type I diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia. 2001;44(3):354–62.

    Article  CAS  Google Scholar 

  62. Howson JM, Cooper JD, Smyth DJ, Walker NM, Stevens H, She JX, et al. Evidence of gene-gene interaction and age-at-diagnosis effects in type 1 diabetes. Diabetes. 2012;61(11):3012–7.

    Article  CAS  PubMed  Google Scholar 

  63. •• Inshaw JRJ, Walker NM, Wallace C, Bottolo L, Todd JA. The chromosome 6q22.33 region is associated with age at diagnosis of type 1 diabetes and disease risk in those diagnosed under 5 years of age. Diabetologia. 2018;61(1):147–57. This study systematically analyzed associations between genetic factors and age of clinical diagnosis of type 1 diabetes.

    Article  CAS  Google Scholar 

  64. Cerutti F, Bruno G, Chiarelli F, Lorini R, Meschi F, Sacchetti C, et al. Younger age at onset and sex predict celiac disease in children and adolescents with type 1 diabetes: an Italian multicenter study. Diabetes Care. 2004;27(6):1294–8.

    Article  Google Scholar 

  65. Howson JM, Rosinger S, Smyth DJ, Boehm BO, Group A-ES, Todd JA. Genetic analysis of adult-onset autoimmune diabetes. Diabetes. 2011;60(10):2645–53.

    Article  CAS  PubMed  Google Scholar 

  66. Frohnert BI, Ide L, Dong F, Baron AE, Steck AK, Norris JM, et al. Late-onset islet autoimmunity in childhood: the diabetes autoimmunity study in the young (DAISY). Diabetologia. 2017;60(6):998–1006.

    Article  CAS  PubMed  Google Scholar 

  67. Mishra R, Chesi A, Cousminer DL, Hawa MI, Bradfield JP, Hodge KM, et al. Relative contribution of type 1 and type 2 diabetes loci to the genetic etiology of adult-onset, non-insulin-requiring autoimmune diabetes. BMC Med. 2017;15(1):88.

    Article  PubMed  Google Scholar 

  68. Redondo MJ, Oram RA, Steck AK. Genetic risk scores for type 1 diabetes prediction and diagnosis. Curr Diab Rep. 2017;17(12):129.

    Article  Google Scholar 

  69. Redondo MJ, Geyer S, Steck AK, Sharp S, Wentworth JM, Weedon MN, et al. A type 1 diabetes genetic risk score predicts progression of islet autoimmunity and development of type 1 diabetes in individuals at risk. Diabetes Care. 2018;41(9):1887–94.

    Article  Google Scholar 

  70. Redondo MJ, Grant SF, Davis A, Greenbaum C, Biobank TDE. Dissecting heterogeneity in paediatric type 1 diabetes: association of TCF7L2 rs7903146 TT and low-risk human leukocyte antigen (HLA) genotypes. Diabet Med. 2016;34(2):286–90.

    Article  PubMed  Google Scholar 

  71. Redondo MJ, Muniz J, Rodriguez LM, Iyer D, Vaziri-Sani F, Haymond MW, et al. Association of TCF7L2 variation with single islet autoantibody expression in children with type 1 diabetes. BMJ Open Diabetes Res Care. 2014;2(1):e000008.

    Article  PubMed  Google Scholar 

  72. Redondo MJ, Geyer S, Steck AK, Sosenko J, Anderson M, Antinozzi P, et al. TCF7L2 genetic variants contribute to phenotypic heterogeneity of type 1 diabetes. Diabetes Care. 2018;41(2):311–7.

    Article  PubMed  Google Scholar 

  73. Keymeulen B, Walter M, Mathieu C, Kaufman L, Gorus F, Hilbrands R, et al. Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia. 2010;53(4):614–23.

    Article  CAS  PubMed  Google Scholar 

  74. Hagopian W, Ferry RJ Jr, Sherry N, Carlin D, Bonvini E, Johnson S, et al. Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protege trial. Diabetes. 2013;62(11):3901–8.

    Article  CAS  PubMed  Google Scholar 

  75. Rigby MR, DiMeglio LA, Rendell MS, Felner EI, Dostou JM, Gitelman SE, et al. Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Diabetes Endocrinol. 2013;1(4):284–94.

    Article  CAS  PubMed  Google Scholar 

  76. Rigby MR, Harris KM, Pinckney A, DiMeglio LA, Rendell MS, Felner EI, et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015;125(8):3285–96.

    Article  PubMed  Google Scholar 

  77. Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, Becker DJ, Gitelman SE, Goland R, et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med. 2009;361(22):2143–52.

    Article  CAS  PubMed  Google Scholar 

  78. Orban T, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet. 2011;378(9789):412–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the European Union’s Seventh Framework Programme PEVNET ([FP7/2007-2013)] under grant agreement number 261441. The participants of the PEVNET consortium are described at http://www.uta.fi/med/pevnet/publications.html. Additional support was from a JDRF research grants awarded to the network of Pancreatic Organ Donors–Virus (nPOD-V) consortium (JDRF 25-2012-516 and JDRF-3-SRA-2017-492-A-N) and a JDRF Career Development Award (5-CDA-2014-221-A-N), an MRC Project Grant (MR/P010695/1) and project grant from Diabetes UK (16/0005480) all to SJR. This work was also supported by NIH grants R01 DK093954 and UC4 DK 104166 (to C.E.M.), U01 DK103180 (to M.R.), VA Merit Award I01BX001733 (to C.E.M.), a JDRF Strategic Research Agreement (2-SRA-2018-493-A-B), and gifts from the Sigma Beta Sorority, the Ball Brothers Foundation, the George and Frances Ball Foundation, and the Holiday Management Foundation, all to C.E.M. R.M. received grants from the JDRF (1-PNF-2014-155-A-V, 2-SRA-2016-164-Q-R), the Agence Nationale de la Recherche (ANR-2015-CE17-0018-01) and by the Innovative Medicines Initiative 2 Joint Undertaking (INNODIA, 115797), which receives support from the EU Horizon 2020 program, the European Federation of Pharmaceutical Industries and Associations, JDRF, and the Helmsley Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmella Evans-Molina.

Ethics declarations

Conflict of Interest

Pia Leete, Roberto Mallone, Sarah J. Richardson, Jay M. Sosenko, Maria J. Redondo, and Carmella Evans-Molina declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leete, P., Mallone, R., Richardson, S.J. et al. The Effect of Age on the Progression and Severity of Type 1 Diabetes: Potential Effects on Disease Mechanisms. Curr Diab Rep 18, 115 (2018). https://doi.org/10.1007/s11892-018-1083-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-1083-4

Keywords

Navigation