Skip to main content

Advertisement

Log in

Lessons From Pancreas Transplantation in Type 1 Diabetes: Recurrence of Islet Autoimmunity

  • Treatment of Type 1 Diabetes (M Pietropaolo, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 1 diabetes recurrence (T1DR) affecting pancreas transplants was first reported in recipients of living-related pancreas grafts from twins or HLA identical siblings; given HLA identity, recipients received no or minimal immunosuppression. This observation provided critical evidence that type 1 diabetes (T1D) is an autoimmune disease. However, T1DR is traditionally considered very rare in immunosuppressed recipients of pancreas grafts from organ donors, representing the majority of recipients, and immunological graft failures are ascribed to chronic rejection. We have been performing simultaneous pancreas–kidney (SPK) transplants for over 25 years and find that 6–8 % of our recipients develop T1DR, with symptoms usually becoming manifest on extended follow-up. T1DR is typically characterized by (1) variable degree of insulitis and loss of insulin staining, on pancreas transplant biopsy (with most often absent), minimal to moderate and rarely severe pancreas, and/or kidney transplant rejection; (2) the conversion of T1D-associated autoantibodies (to the autoantigens GAD65, IA-2, and ZnT8), preceding hyperglycemia by a variable length of time; and (3) the presence of autoreactive T cells in the peripheral blood, pancreas transplant, and/or peripancreatic transplant lymph nodes. There is no therapeutic regimen that so far has controlled the progression of islet autoimmunity, even when additional immunosuppression was added to the ongoing chronic regimens; we hope that further studies and, in particular, in-depth analysis of pancreas transplant biopsies with recurrent diabetes will help identify more effective therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Burke GW, Ciancio G, Sollinger HW. Advances in pancreas transplantation. Transplantation. 2004;77(9 Suppl):S62–S7.

    Article  CAS  PubMed  Google Scholar 

  2. Ciancio G, Burke GW, Miller J. Current treatment practices in immunosuppression. Expert Opin Pharmacother. 2000;1:1307–30.

    Article  CAS  PubMed  Google Scholar 

  3. Ciancio G, Mattiazzi A, Miller J, Burke GW. Daclizumab as induction therapy in kidney and simultaneous pancreas-kidney transplantation. Minerva Urol Nefrol. 2003;55(1):43–56.

    CAS  PubMed  Google Scholar 

  4. Burke GW, Ciancio G. Critical care issues in the renal and pancreatic allograft recipient. In: Civetta JM, Taylor RW, Kirby RR, editors. Critical care. 3rd ed. Philadelphia: J.B. Lippincott Company; 1997. p. 1311–5.

    Google Scholar 

  5. Burke III GW, Ciancio G, Figueiro J, Buigas R, Olson L, Roth D, et al. Hypercoagulable state associated with kidney-pancreas transplantation. Thromboelastogram-directed anti-coagulation and implications for future therapy. Clin Transplant. 2004;18(4):423–8.

    Article  PubMed  Google Scholar 

  6. Burke GW, Ciancio G, Cirocco R, Markou M, Olson L, Contreras N, et al. Microangiopathy in kidney and simultaneous pancreas/kidney recipients treated with tacrolimus: evidence of endothelin and cytokine involvement. Transplantation. 1999;68(9):1336–42.

    Article  CAS  PubMed  Google Scholar 

  7. Moon JI, Ciancio G, Burke GW. Arterial reconstruction with donor iliac vessels during pancreas transplantation: an intraoperative approach to arterial injury or inadequate flow. Clin Transplant. 2005;19(2):286–90.

    Article  PubMed  Google Scholar 

  8. Burke III GW, Kaufman DB, Millis JM, Gaber AO, Johnson CP, Sutherland DE, et al. Prospective, randomized trial of the effect of antibody induction in simultaneous pancreas and kidney transplantation: three-year results. Transplantation. 2004;77(8):1269–75.

    Article  PubMed  Google Scholar 

  9. Ciancio G, Sageshima J, Chen L, Gaynor JJ, Hanson L, Tueros L, et al. Advantage of rapamycin over mycophenolate mofetil when used with tacrolimus for simultaneous pancreas kidney transplants: randomized, single-center trial at 10 years. Am J Transplant. 2012;12(12):3363–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Burke GW, Ciancio G, Olson L, Roth D, Miller J. Ten-year survival after simultaneous pancreas/kidney transplantation with bladder drainage and tacrolimus-based immunosuppression. Transplant Proc. 2001;33(1–2):1681–3.

    Article  CAS  PubMed  Google Scholar 

  11. Sutherland DE, Sibley R, Xu XZ, Michael A, Srikanta AM, Taub F, et al. Twin-to-twin pancreas transplantation: reversal and reenactment of the pathogenesis of type I diabetes. Trans Assoc Am Physicians. 1984;97:80–7.

    CAS  PubMed  Google Scholar 

  12. Sibley RK, Sutherland DE, Goetz F, Michael AF. Recurrent diabetes mellitus in the pancreas iso- and allograft. A light and electron microscopic and immunohistochemical analysis of four cases. Lab Invest; J Tech Methods Pathol. 1985;53(2):132–44.

    CAS  Google Scholar 

  13. Sutherland DE, Goetz FC, Sibley RK. Recurrence of disease in pancreas transplants. Diabetes. 1989;38(Supplement 1):85–7.

    Article  PubMed  Google Scholar 

  14. Nakhleh RE, Gruessner RW, Swanson PE, Tzardis PJ, Brayman K, Dunn DL, et al. Pancreas transplant pathology. A morphologic, immunohistochemical, and electron microscopic comparison of allogeneic grafts with rejection, syngeneic grafts, and chronic pancreatitis. Am J Surg Pathol. 1991;15(3):246–56.

    Article  CAS  PubMed  Google Scholar 

  15. Santamaria P, Nakhleh RE, Sutherland DE, Barbosa JJ. Characterization of T lymphocytes infiltrating human pancreas allograft affected by isletitis and recurrent diabetes. Diabetes. 1992;41(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  16. Bosi E, Bottazzo GF, Secchi A, Pozza G, Shattock M, Saunders A, et al. Islet cell autoimmunity in type I diabetic patients after HLA-mismatched pancreas transplantation. Diabetes. 1989;38 Suppl 1:82–4.

    Article  PubMed  Google Scholar 

  17. Dieterle CD, Hierl FX, Gutt B, Arbogast H, Meier GR, Veitenhansl M, et al. Insulin and islet autoantibodies after pancreas transplantation. Transpl Int. 2005;18(12):1361–5.

    Article  CAS  PubMed  Google Scholar 

  18. Lohmann T, Klemm T, Geissler F, Uhlmann D, Ludwig S, Hauss J, et al. Islet cell-specific autoantibodies as potential markers for recurrence of autoimmune type 1 diabetes after simultaneous pancreas-kidney transplantation. Transplant Proc. 2002;34(6):2249–50.

    Article  CAS  PubMed  Google Scholar 

  19. Sundkvist G, Tyden G, Karlsson FA, Bolinder J. Islet autoimmunity before and after pancreas transplantation in patients with type I diabetes mellitus [letter] [in process citation]. Diabetologia. 1998;41(12):1532–3.

    Article  CAS  PubMed  Google Scholar 

  20. Esmatjes E, Rodriguez-Villar C, Ricart MJ, Casamitjana R, Martorell J, Sabater L, et al. Recurrence of immunological markers for type 1 (insulin-dependent) diabetes mellitus in immunosuppressed patients after pancreas transplantation. Transplantation. 1998;66(1):128–31.

    Article  CAS  PubMed  Google Scholar 

  21. Thivolet C, Abou-Amara S, Martin X, Lefrancois N, Petruzzo P, McGregor B, et al. Serological markers of recurrent beta cell destruction in diabetic patients undergoing pancreatic transplantation. Transplantation. 2000;69(1):99–103.

    Article  CAS  PubMed  Google Scholar 

  22. Petruzzo P, Andreelli F, McGregor B, Lefrancois N, Dawahra M, Feitosa LC, et al. Evidence of recurrent type I diabetes following HLA-mismatched pancreas transplantation. Diabetes Metab. 2000;26(3):215–8.

    CAS  PubMed  Google Scholar 

  23. Braghi S, Bonifacio E, Secchi A, Di CV, Pozza G, Bosi E. Modulation of humoral islet autoimmunity by pancreas allotransplantation influences allograft outcome in patients with type 1 diabetes. Diabetes. 2000;49(2):218–24.

    Article  CAS  PubMed  Google Scholar 

  24. Ishida-Oku M, Iwase M, Sugitani A, Masutani K, Kitada H, Tanaka M, et al. A case of recurrent type 1 diabetes mellitus with insulitis of transplanted pancreas in simultaneous pancreas-kidney transplantation from cardiac death donor. Diabetologia. 2010;53(2):341–5.

    Article  CAS  PubMed  Google Scholar 

  25. Assalino M, Genevay M, Morel P, Demuylder-Mischler S, Toso C, Berney T. Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation in the absence of GAD and IA-2 autoantibodies. Am J Transplant. 2012;12(2):492–5.

    Article  CAS  PubMed  Google Scholar 

  26. Occhipinti M, Lampasona V, Vistoli F, Bazzigaluppi E, Scavini M, Boggi U, et al. Zinc transporter 8 autoantibodies increase the predictive value of islet autoantibodies for function loss of technically successful solitary pancreas transplant. Transplantation. 2011;92(6):674–7.

    Article  CAS  PubMed  Google Scholar 

  27. Martins LS, Henriques AC, Fonseca IM, Rodrigues AS, Oliverira JC, Dores JM, et al. Pancreatic autoantibodies after pancreas-kidney transplantation—do they matter? Clin Transpl. 2014;28(4):462–9. doi:10.1111/ctr.12337. This study also suggests that autoantibodies are important for diabetes recurrence in pancreas transplantation.

    Article  CAS  Google Scholar 

  28. Sutherland DE, Gruessner RW, Gruessner AC. Pancreas transplantation for treatment of diabetes mellitus. World J Surg. 2001;25(4):487–96.

    Article  CAS  PubMed  Google Scholar 

  29. Burke III GW, Vendrame F, Pileggi A, Ciancio G, Reijonen H, Pugliese A. Recurrence of autoimmunity following pancreas transplantation. Curr Diab Rep. 2011;11:413–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Vendrame F, Pileggi A, Laughlin E, Allende G, Martin-Pagola A, Molano RD, et al. Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, is associated with autoantibodies and pathogenic autoreactive CD4 T-cells. Diabetes. 2010;59(4):947–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Bashir SJ, Maibach HI. Alefacept (Biogen). Curr Opin Investig Drugs. 2001;2(5):631–4.

    CAS  PubMed  Google Scholar 

  32. Sugiyama H, McCormick TS, Cooper KD, Korman NJ. Alefacept in the treatment of psoriasis. Clin Dermatol. 2008;26(5):503–8.

    Article  PubMed  Google Scholar 

  33. Rigby MR, Harris KM, Pinckney A, DiMeglio LA, Rendell MS, Felner EI, et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015. doi:10.1172/jci81722. This study reports the effects of an anti-memory cell agent in T1D for up to 2 years.

    PubMed Central  PubMed  Google Scholar 

  34. Rigby MR, DiMeglio LA, Rendell MS, Felner EI, Dostou JM, Gitelman SE, et al. Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomized, double-blind, placebo-controlled phase 2 trial. Lancet Diabetes Endocrinol. 2013;1(4):284–94. doi:10.1016/s2213-8587(13)70111-6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Krogvold L, Edwin B, Buanes T, Ludvigsson J, Korsgren O, Hyoty H, et al. Pancreatic biopsy by minimal tail resection in live adult patients at the onset of type 1 diabetes: experiences from the DiViD study. Diabetologia. 2014. doi:10.1007/s00125-013-3155-y. This study reports findings of pancreas biopsies obtained from patients with recent-onset T1D.

    PubMed  Google Scholar 

  36. Bottazzo GF, Dean BM, McNally JM, Mackay EH, Swift PG, Gamble DR. In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med. 1985;313(6):353–60.

    Article  CAS  PubMed  Google Scholar 

  37. Pugliese A, Yang M, Kusmarteva I, Heiple T, Vendrame F, Wasserfall C, et al. The Juvenile Diabetes Research Foundation Network for Pancreatic Organ Donors with Diabetes (nPOD) Program: goals, operational model and emerging findings. Pediatr Diabetes. 2014;15(1):1–9.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Klinke DJ. Age-corrected beta cell mass following onset of type 1 diabetes mellitus correlates with plasma C-peptide in humans. PLoS One. 2011;6(11), e26873.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Klinke DJ. Extent of beta cell destruction is important but insufficient to predict the onset of type 1 diabetes mellitus. PLoS ONE. 2008;3(1), e1374.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Pugliese A, Vendrame F, Reijonen H, Atkinson MA, Campbell-Thompson M, Burke GW. New insight on human type 1 diabetes biology: nPOD and nPOD-transplantation. Current Diabetes Reports. 2014;14(10):530. doi:10.1007/s11892-014-0530-0.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Martin-Pagola A, Sisino G, Allende G, Dominguez-Bendala J, Gianani R, Reijonen H, et al. Insulin protein and proliferation in ductal cells in the transplanted pancreas of patients with type 1 diabetes and recurrence of autoimmunity. Diabetologia. 2008;51(10):1803–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ohneda K, Mirmira RG, Wang J, Johnson JD, German MS. The homeodomain of PDX-1 mediates multiple protein-protein interactions in the formation of a transcriptional activation complex on the insulin promoter. Mol Cell Biol. 2000;20(3):900–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Tanaka S, Kobayashi T, Nakanishi K, Okubo M, Murase T, Hashimoto M, et al. Evidence of primary beta-cell destruction by T-cells and beta-cell differentiation from pancreatic ductal cells in diabetes associated with active autoimmune chronic pancreatitis. Diabetes Care. 2001;24(9):1661–7.

    Article  CAS  PubMed  Google Scholar 

  44. Vendrame F, Hopfner Y-Y, Diamantopoulos S, Virdi SK, Allende G, Snowhite IV, et al. Risk factors for type 1 diabetes recurrence in immunosuppressed recipients of simultaneous pancreas-kidney transplants. Am J Transplant. 2015. doi:10.1111/ajt.13426. This is the largest series of pancreas transplant recipients with thorough evaluation of autoantibodies and clinical history over more than 20 years, which defines risk factors for T1DR.

    PubMed  Google Scholar 

  45. Sageshima J, Ciancio G, Gaynor JJ, Chen L, Guerra G, Kupin W, et al. Addition of anti-CD25 to thymoglobulin for induction therapy: delayed return of peripheral blood CD25-positive population. Clin Transplant. 2011;25(2):E132–E5.

    Article  CAS  PubMed  Google Scholar 

  46. Laughlin E, Burke G, Pugliese A, Falk B, Nepom G. Recurrence of autoreactive antigen-specific CD4+ T cells in autoimmune diabetes after pancreas transplantation. Clin Immunol. 2008;128(1):23–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309(23):2473–9.

    Article  CAS  PubMed  Google Scholar 

  48. Noble JA, Erlich HA. Genetics of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2(1):a007732.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9(9):513–21.

    Article  CAS  PubMed  Google Scholar 

  50. Fisher MM, Watkins RA, Blum J, Evans-Molina C, Chalasani N, DiMeglio LA, et al. Elevations in circulating methylated and unmethylated preproinsulin DNA in new-onset type 1 diabetes. Diabetes. 2015. doi:10.2337/db15-0430.

    PubMed  Google Scholar 

  51. Herold KC, Usmani-Brown S, Ghazi T, Lebastchi J, Beam CA, Bellin MD, et al. Beta cell death and dysfunction during type 1 diabetes development in at-risk individuals. J Clin Invest. 2015;125(3):1163–73. doi:10.1172/jci78142.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Gaglia JL, Harisinghani M, Aganj I, Wojtkiewicz GR, Hedgire S, Benoist C, et al. Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients. Proc Natl Acad Sci U S A. 2015;112(7):2139–44. doi:10.1073/pnas.1424993112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Gaglia JL, Guimaraes AR, Harisinghani M, Turvey SE, Jackson R, Benoist C, et al. Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J Clin Invest. 2011;121(1):442–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Campbell-Thompson M, Wasserfall C, Montgomery EL, Atkinson MA, Kaddis JS. Pancreas organ weight in individuals with disease-associated autoantibodies at risk for type 1 diabetes. JAMA. 2012;308(22):2337–9.

    Article  CAS  PubMed  Google Scholar 

  55. Williams AJ, Thrower SL, Sequeiros IM, Ward A, Bickerton AS, Triay JM, et al. Pancreatic volume is reduced in adult patients with recently diagnosed type 1 diabetes. J Clin Endocrinol Metab. 2012;97(11):E2109–13. doi:10.1210/jc.2012-1815.

    Article  CAS  PubMed  Google Scholar 

  56. Bayer AL, Pugliese A, Malek TR. The IL-2/IL-2R system: from basic science to therapeutic applications to enhance immune regulation. Immunol Res. 2013;57(1–3):197–209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Studies by the authors reviewed here were supported by grants from the National Institutes of Health (R01 DK070011, R01 DK052068), the JDRF (17-2011-594, 17-2012-3), the American Diabetes Association (RA-1-09-RA-413), the John C. Hench Foundation, and the Diabetes Research Institute Foundation, Hollywood, Florida. We are indebted to our research nurses, Lissett Tueros, Lois Hanson, and Sandra Flores.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George W. Burke III.

Ethics declarations

Conflict of Interest

George W. Burke, III; Francesco Vendrame; Sahil K. Virdi; G. Ciancio; Linda Chen; Phillip Ruiz; Shari Messinger; Helena K. Reijonen; and Alberto Pugliese declare that they have no conflict of interest.

Ethical Approval

Studies described in this article involve human subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Our studies were approved by the University of Miami Institutional Review Board.

Informed Consent

Informed consent was obtained from all individuals who actively participated in the study. For some patients who did not actively participated in the study but whose data were retrospectively analyzed, studies were conducted under waiver of consent.

Ethical Approval and Animal Welfare

For studies described that involved experimental animals, all applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

This article is part of the Topical Collection on Treatment of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burke, G.W., Vendrame, F., Virdi, S.K. et al. Lessons From Pancreas Transplantation in Type 1 Diabetes: Recurrence of Islet Autoimmunity. Curr Diab Rep 15, 121 (2015). https://doi.org/10.1007/s11892-015-0691-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0691-5

Keywords

Navigation