Skip to main content

Advertisement

Log in

Update on Glycemic Control for the Treatment of Diabetic Kidney Disease

  • Microvascular Complications—Nephropathy (T Isakova, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetic kidney disease (DKD) is a common, complex condition that has become a significant public health problem. The beneficial effects of intensive glycemic control in type 1 diabetes mellitus on development of DKD are proven; however, the evidence for nephroprotection in patients with type 2 diabetes is conflicting. Moreover, a strategy of intensive glycemic control increases the risk for adverse effects (hypoglycemic episodes) with no obvious impact on macrovascular events or mortality in recent large randomized controlled trials. The risk for hypoglycemia with intensive therapy is heightened in patients with significant renal dysfunction, due to decreased renal clearance of insulin. Establishing an ideal level of glycemic control in patients requires an individualized approach taking into account duration of diabetes and presence of coexisting comorbidities and pre-existing DKD. In this article, we review the available evidence from both observational studies and randomized controlled trials and provide suggestions about evaluating the potential benefits and harm from intensive glycemic control in patients. We also discuss how in the future, a personalized approach using biomarkers might help identify patients most likely to respond as well as those most susceptible to harm. We believe that using the optimal level of glycemic control in diabetic patients using a multi-pronged strategy will improve individual patient outcomes and decrease the overall burden of morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, et al. United States renal data system 2011 annual data report: atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis Off J Natl Kidney Found. 2012;59(A7):e1–420.

    Google Scholar 

  2. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038–47.

    Article  CAS  PubMed  Google Scholar 

  3. Foley RN, Collins AJ. End-stage renal disease in the United States: an update from the United States renal data system. J Am Soc Nephrol JASN. 2007;18:2644–8.

    Article  Google Scholar 

  4. De Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305:2532–9.

    Article  PubMed Central  PubMed  Google Scholar 

  5. KDOQI. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis Off J Natl Kidney Found. 2007;49:S12–154.

    Article  Google Scholar 

  6. National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis Off J Natl Kidney Found. 2012;60:850–86. This reference provides the latest recommendations regarding CKD and glycemic control.

    Article  Google Scholar 

  7. Harris RD, Steffes MW, Bilous RW, Sutherland DE, Mauer SM. Global glomerular sclerosis and glomerular arteriolar hyalinosis in insulin dependent diabetes. Kidney Int. 1991;40:107–14.

    Article  CAS  PubMed  Google Scholar 

  8. Heilig CW, Concepcion LA, Riser BL, Freytag SO, Zhu M, Cortes P. Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest. 1995;96:1802–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Mishra R, Emancipator SN, Kern T, Simonson MS. High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells. Kidney Int. 2005;67:82–93.

    Article  CAS  PubMed  Google Scholar 

  10. Lin C-L, Wang J-Y, Huang Y-T, Kuo Y-H, Surendran K, Wang F-S. Wnt/beta-catenin signaling modulates survival of high glucose-stressed mesangial cells. J Am Soc Nephrol JASN. 2006;17:2812–20.

    Article  CAS  Google Scholar 

  11. Chuang PY, Dai Y, Liu R, He H, Kretzler M, Jim B, et al. Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS One. 2011;6, e23566.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Yacoub R, Lee K, He JC. The role of SIRT1 in diabetic kidney disease. Front Endocrinol. 2014;5:166.

    Article  Google Scholar 

  13. Susztak K, Raff AC, Schiffer M, Böttinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006;55:225–33.

    Article  CAS  PubMed  Google Scholar 

  14. Hohenstein B, Hausknecht B, Boehmer K, Riess R, Brekken RA, Hugo CPM. Local VEGF activity but not VEGF expression is tightly regulated during diabetic nephropathy in man. Kidney Int. 2006;69:1654–61.

    Article  CAS  PubMed  Google Scholar 

  15. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–80.

    Article  CAS  PubMed  Google Scholar 

  16. Carey RM, Siragy HM. The intrarenal renin-angiotensin system and diabetic nephropathy. Trends Endocrinol Metab TEM. 2003;14:274–81.

    Article  CAS  Google Scholar 

  17. Fullerton B, Jeitler K, Seitz M, Horvath K, Berghold A, Siebenhofer A. Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus. Cochrane Database Syst Rev. 2014;2, CD009122.

    PubMed  Google Scholar 

  18. Fioretto P, Sutherland DER, Najafian B, Mauer M. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int. 2006;69:907–12. This study provides evidence regarding improvement in renal lesions post euglycemia following pancreas transplantation.

    Article  CAS  PubMed  Google Scholar 

  19. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339:69–75.

    Article  CAS  PubMed  Google Scholar 

  20. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329:977–86.

  21. DCCT/EDIC Research Group, de Boer IH, Sun W, Cleary PA, Lachin JM, Molitch ME, et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. 2011;365:2366–76.

    Article  Google Scholar 

  22. Writing Group for the DCCT/EDIC Research Group, Orchard TJ, Nathan DM, Zinman B, Cleary P, Brillon D, et al. Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality. JAMA. 2015;313:45–53. This is the premier study regarding intensive control of T1DM and mortality.

    Article  Google Scholar 

  23. Bash LD, Selvin E, Steffes M, Coresh J, Astor BC. Poor glycemic control in diabetes and the risk of incident chronic kidney disease even in the absence of albuminuria and retinopathy: atherosclerosis risk in communities (ARIC) study. Arch Intern Med. 2008;168:2440–7.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Coca SG, Ismail-Beigi F, Haq N, Krumholz HM, Parikh CR. Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch Intern Med. 2012;172:761–9.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:837–53.

  26. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89. This study is one of the largest randomized controlled trials on intensive glycemic control in T2DM.

    Article  CAS  PubMed  Google Scholar 

  27. ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72. This study is one of the largest randomized controlled trials on intensive glycemic control in T2DM.

    Article  Google Scholar 

  28. Zoungas S, Chalmers J, Neal B, Billot L, Li Q, Hirakawa Y, et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med. 2014;371:1392–406. This study is one of the largest randomized controlled trials on intensive glycemic control in T2DM and also studies the effects of intensive blood pressure control on micro and macrovascular outcomes.

    Article  PubMed  Google Scholar 

  29. Perkovic V, Cooper M, Chalmers J, Marre M, Zoungas S. ADVANCE-ON: long term benefits of intensive glucose control for endstage kidney disease. Philadelphia: Kidney Week; 2014. This is a long term follow up of the ADVANCE trial with emphasis on renal outcomes.

    Google Scholar 

  30. Van der Leeuw J, Visseren FLJ, Woodward M, Zoungas S, Kengne AP, van der Graaf Y, et al. Predicting the effects of blood pressure-lowering treatment on major cardiovascular events for individual patients with type 2 diabetes mellitus: results from action in diabetes and vascular disease: preterax and diamicron MR controlled evaluation. Hypertension. 2015;65:115–21. This is an evaluation of a treatment algorithm to predict outcomes of blood pressure control on major cardiovascular events in the ADVANCE trial.

    Article  PubMed  Google Scholar 

  31. Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376:419–30. This is a post hoc analysis of long term microvascular and renal outcomes in the ACCORD trial.

    Article  PubMed Central  PubMed  Google Scholar 

  32. ACCORD Study Group, ACCORD Eye Study Group, Chew EY, Ambrosius WT, Davis MD, Danis RP, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363:233–44.

    Article  Google Scholar 

  33. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39. This is the VADT trial which evaluated intensive glycemic control on micro and macrovascular outcomes in veterans.

    Article  CAS  PubMed  Google Scholar 

  34. Papademetriou V, Lovato L, Doumas M, Nylen E, Mottl A, Cohen RM, et al. Chronic kidney disease and intensive glycemic control increase cardiovascular risk in patients with type 2 diabetes. Kidney Int. 2015;87:649–59. This is a post hoc analysis of the ACCORD trial demonstrating that intensive glycemic control causes worse cardiovascular outcomes in CKD.

    Article  PubMed  Google Scholar 

  35. Kelly TN, Bazzano LA, Fonseca VA, Thethi TK, Reynolds K, He J. Systematic review: glucose control and cardiovascular disease in type 2 diabetes. Ann Intern Med. 2009;151:394–403.

    Article  PubMed  Google Scholar 

  36. Moen MF, Zhan M, Hsu VD, Walker LD, Einhorn LM, Seliger SL, et al. Frequency of hypoglycemia and its significance in chronic kidney disease. Clin J Am Soc Nephrol CJASN. 2009;4:1121–7.

    Article  CAS  Google Scholar 

  37. Rabkin R, Simon NM, Steiner S, Colwell JA. Effect of renal disease on renal uptake and excretion of insulin in man. N Engl J Med. 1970;282:182–7.

    Article  CAS  PubMed  Google Scholar 

  38. DeFronzo RA, Tobin JD, Rowe JW, Andres R. Glucose intolerance in uremia. Quantification of pancreatic beta cell sensitivity to glucose and tissue sensitivity to insulin. J Clin Invest. 1978;62:425–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Adrogué HJ. Glucose homeostasis and the kidney. Kidney Int. 1992;42:1266–82.

    Article  PubMed  Google Scholar 

  40. Fadda GZ, Hajjar SM, Perna AF, Zhou XJ, Lipson LG, Massry SG. On the mechanism of impaired insulin secretion in chronic renal failure. J Clin Invest. 1991;87:255–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Schernthaner G, Ritz E, Schernthaner G-H. Strict glycaemic control in diabetic patients with CKD or ESRD: beneficial or deadly? Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc-Eur Ren Assoc. 2010;25:2044–7.

    Google Scholar 

  42. Mak RH. Intravenous 1,25 dihydroxycholecalciferol corrects glucose intolerance in hemodialysis patients. Kidney Int. 1992;41:1049–54.

    Article  CAS  PubMed  Google Scholar 

  43. Perna AF, Fadda GZ, Zhou XJ, Massry SG. Mechanisms of impaired insulin secretion after chronic excess of parathyroid hormone. Am J Physiol. 1990;259:F210–6.

    CAS  PubMed  Google Scholar 

  44. Joy MS, Cefalu WT, Hogan SL, Nachman PH. Long-term glycemic control measurements in diabetic patients receiving hemodialysis. Am J Kidney Dis Off J Natl Kidney Found. 2002;39:297–307.

    Article  Google Scholar 

  45. Ichikawa H, Nagake Y, Takahashi M, Nakazono H, Kawabata K, Shikata K, et al. What is the best index of glycemic control in patients with diabetes mellitus on hemodialysis? Nihon Jinzo Gakkai Shi. 1996;38:305–8.

    CAS  PubMed  Google Scholar 

  46. Nakao T, Matsumoto H, Okada T, Han M, Hidaka H, Yoshino M, et al. Influence of erythropoietin treatment on hemoglobin A1c levels in patients with chronic renal failure on hemodialysis. Intern Med Tokyo Jpn. 1998;37:826–30.

    Article  CAS  Google Scholar 

  47. Inaba M, Okuno S, Kumeda Y, Yamada S, Imanishi Y, Tabata T, et al. Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: effect of anemia and erythropoietin injection. J Am Soc Nephrol JASN. 2007;18:896–903. This is a comparison of glycated albumin and hemoglobin A1C in hemodialysis patients showing that glycated albumin performs better.

    Article  CAS  Google Scholar 

  48. Morioka T, Emoto M, Tabata T, Shoji T, Tahara H, Kishimoto H, et al. Glycemic control is a predictor of survival for diabetic patients on hemodialysis. Diabetes Care. 2001;24:909–13. This is an observational study showing relationship between glycemic control and survival in patients on hemodialysis.

    Article  CAS  PubMed  Google Scholar 

  49. Shurraw S, Hemmelgarn B, Lin M, Majumdar SR, Klarenbach S, Manns B, et al. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease: a population-based cohort study. Arch Intern Med. 2011;171:1920–7. This is an observational study showing relationship between glycemic control and survival in patients with CKD.

    Article  PubMed  Google Scholar 

  50. Natali A, Toschi E, Baldeweg S, Ciociaro D, Favilla S, Saccà L, et al. Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes. Diabetes. 2006;55:1133–40.

    Article  CAS  PubMed  Google Scholar 

  51. Al-Lamki RS, Mayadas TN. TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney Int. 2015;87:281–96.

    Article  CAS  PubMed  Google Scholar 

  52. Niewczas MA, Gohda T, Skupien J, Smiles AM, Walker WH, Rosetti F, et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol JASN. 2012;23:507–15.

    Article  CAS  Google Scholar 

  53. Gohda T, Niewczas MA, Ficociello LH, Walker WH, Skupien J, Rosetti F, et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J Am Soc Nephrol JASN. 2012;23:516–24.

    Article  CAS  Google Scholar 

  54. Dhaun N, Goddard J, Webb DJ. The endothelin system and its antagonism in chronic kidney disease. J Am Soc Nephrol JASN. 2006;17:943–55.

    Article  CAS  Google Scholar 

  55. Ekinci EI, Jerums G, Skene A, Crammer P, Power D, Cheong KY, et al. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care. 2013;36:3620–6. This is a study showing the histologic variation in renal biopsies in patients with T2DM.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Okada T, Nagao T, Matsumoto H, Nagaoka Y, Wada T, Nakao T. Histological predictors for renal prognosis in diabetic nephropathy in diabetes mellitus type 2 patients with overt proteinuria. Nephrol Carlton Vic. 2012;17:68–75. This is a study showing that tubulointerstitial fibrosis is an important predictor of renal outcomes.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GNN is supported by NIH (T32DK00775716). SGC is supported by the NIH/NIDDK (R01DK096549).

Compliance with Ethics Guidelines

Conflict of Interest

Girish N. Nadkarni and Steven G. Coca have a pending patent for cross-validated biomarker and clinical diagnostics panel for prediction of kidney function worsening. Rabi Yacoub declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven G. Coca.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadkarni, G.N., Yacoub, R. & Coca, S.G. Update on Glycemic Control for the Treatment of Diabetic Kidney Disease. Curr Diab Rep 15, 42 (2015). https://doi.org/10.1007/s11892-015-0612-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0612-7

Keywords

Navigation