Skip to main content

Glycemic Control

  • Chapter
  • First Online:
Diabetes and Kidney Disease

Abstract

The prevalence of chronic kidney disease in patients with diabetes continues to increase. Management of these patients is quite challenging, as it needs a comprehensive and personalized approach, in line with the available studies and guidelines proposing individualized glycemic targets. The cornerstone of optimal glycemic control starts with the knowledge of the pharmacokinetics and pharmacodynamics of the available antihyperglycemic medications combined with the data from outcomes studies to help us understand the risks and benefits of these therapies for this specific subset of patients.

In this chapter, we will review the latest evidence guiding optimal glycemic control in patients with chronic kidney disease. We will focus on currently available antihyperglycemic agents including their limitations in these subset of patients, glycemic targets, monitoring glycemic control, and the importance of comprehensive multidisciplinary care for diabetic patients with chronic kidney disease. We will also highlight the fact that normoglycemia needs to be maintained safely and discuss the impact of hypoglycemia in this chapter as it relates to patients with chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saran R, Robinson B, Abbott KC, Bragg-Gresham J, Chen X, Gipson D, et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States EXECUTIVE SUMMARY; 2020.

    Google Scholar 

  2. Rocco MV, Berns JS. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60(5):850–86.

    Article  Google Scholar 

  3. Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis [Internet]. 2014;63(5):713–35. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0272638614004910.

    Article  Google Scholar 

  4. Garber AJ, Handelsman Y, Grunberger G, Einhorn D, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2020 executive summary. Endocr Pract. 2020;26:107–39.

    Article  PubMed  Google Scholar 

  5. Imran SA, Agarwal G, Bajaj HS, Ross S. Targets for glycemic control. Can J Diabetes [Internet]. 2018;42(SUPPL):S42–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1499267117308407.

    Article  Google Scholar 

  6. American Diabetes Association. Glycemic targets: standards of medical care in diabetes 2018. Diabetes Care [Internet]. 2018;41(Supplement 1):S55–64. Available from: http://care.diabetesjournals.org/lookup/doi/10.2337/dc18-S006.

    Article  Google Scholar 

  7. Kirkman MS, Briscoe VJ, Clark N, Florez H, Haas LB, Halter JB, et al. Diabetes in older adults [Internet]. Diabetes Care. 2012;35:2650–64. Available from: http://care.diabetesjournals.org/cgi/doi/10.2337/dc12-1801.

  8. DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  9. Turner R. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Google Scholar 

  10. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28(2):103–17.

    Article  CAS  PubMed  Google Scholar 

  11. Hahr AJ, Molitch ME. Management of diabetes mellitus in patients with chronic kidney disease. Clin Diabetes Endocrinol. 2015;1(1).

    Google Scholar 

  12. Gerstein HC, Miller ME, Byington RP, Goff DC, Bigger JT, Buse JB, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.

    Article  CAS  PubMed  Google Scholar 

  13. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  CAS  PubMed  Google Scholar 

  14. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  15. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60:1577–85. Springer Verlag.

    Google Scholar 

  16. Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia. 2013;56:1898–906.

    Google Scholar 

  17. Minamii T, Nogami M, Ogawa W. Mechanisms of metformin action: in and out of the gut. J Diabetes Investig. 2018;9(4):701–3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Markowicz-Piasecka M, Huttunen KM, Mateusiak L, Mikiciuk-Olasik E, Sikora J. Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics. Curr Pharm Des. 2016;23(17):2532–50.

    Google Scholar 

  19. Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012;22(11):820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tahrani AA, Barnett AH, Bailey CJ. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus [Internet]. Nat Rev Endocrinol. 2016;12:566–92. Available from: https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchR.

  21. Bailey CJ. The current drug treatment landscape for diabetes and perspectives for the future. Clin Pharmacol Ther. 2015;98:170–84. Nature Publishing Group.

    Google Scholar 

  22. Dissanayake AM, Wheldon MC, Hood CJ. Pharmacokinetics of metformin in patients with chronic kidney disease stage 4 and metformin naive type 2 diabetes. Pharmacol Res Perspect. 2018;6(5).

    Google Scholar 

  23. Sola D, Rossi L, Schianca GPC, Maffioli P, Bigliocca M, Mella R, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci. 2015;11:840–8.Termedia Publishing House Ltd.

    Google Scholar 

  24. Colagiuri S, Matthews D, Leiter LA, Chan SP, Sesti G, Marre M. The place of gliclazide MR in the evolving type 2 diabetes landscape: a comparison with ther sulfonylureas and newer oral antihyperglycemic agents. Diabetes Res Clin Pract. 2018;143:1–14.

    Article  CAS  PubMed  Google Scholar 

  25. Phillippe H, Wargo KA. Mitiglinide: a novel agent for the treatment of Tye 2 diabetes mellitus. Ann Pharmacother. 2010;44(10):1615–23.

    Article  PubMed  Google Scholar 

  26. Landgraf R. Meglitinide analogues in the treatment of type 2 diabetes mellitus. Drugs Aging. 2000;17(5):411–25.

    Article  CAS  PubMed  Google Scholar 

  27. Devineni D, Walter HY, Harold SS, Lee JS, Prasad P, McLeod JF. Pharmacokinetics of nateglinide in renally impaired diabetic patients. J Clin Pharmacol. 2003;43(2):163–70.

    Article  CAS  PubMed  Google Scholar 

  28. Greenfield JR, Chisholm DJ. Thiazolidinediones-mechanisms of action. Aust Prescr. 2004;27:67–70.

    Google Scholar 

  29. Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinediones as antidiabetic agents: a critical review. Bioorganic Chem. 2018;77:548–67.

    Google Scholar 

  30. Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of T2 diabetes mellitus: past, present and future. Crit Rev Toxicol. 2018;48(1):52–108.

    Article  CAS  PubMed  Google Scholar 

  31. Nistala R, Savin V. Diabetes, hypertension, and chronic kidney disease progression: role of DPP4. Am J Physiol Physiol. 2017;312(4):661–70.

    Article  Google Scholar 

  32. Crepaldi G, Carruba M, Comaschi M, Del Prato S, Frajese G, Paolisso G. DPP4 inhibitos and their role in type 2 diabetes management. J Endocrinol Investig. 2007;30(7):610–4.

    Article  CAS  Google Scholar 

  33. Jarvis CI, Cabrera A, Charron D. Alogliptin: a new DDP4 inhibitor for type 2 diabetes mellitus. Ann Pharmacother. 2013;47(11):1532–9.

    Article  PubMed  Google Scholar 

  34. Dash RP, Babu RJ, Srinivas NR. Reappraisal and perspectives of clinical drug–drug interaction potential of α-glucosidase inhibitors such as acarbose, voglibose and miglitol in the treatment of type 2 diabetes mellitus. Xenobiotica. 2018;48:89–108.

    Google Scholar 

  35. Liu Z, Ma S. Recent advances in synthetic α-glucosidase inhibitors. ChemMedChem. 2017;12:819–29. John Wiley and Sons Ltd.

    Google Scholar 

  36. Hedrington MS, Davis SN. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin Pharmacother. 2019;20(18):2229–35.

    Article  PubMed  Google Scholar 

  37. Garcia-Ropero A, Badimon JJ, Santos-Gallego CG. The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments. Expert Opin Drug Metab Toxicol. 2018;14:1287–302. Taylor and Francis Ltd.

    Google Scholar 

  38. Katz PM, Leiter LA. The role of the kidney and SGLT2 inhibitors in type 2 diabetes. Can J Diabetes. 2015;39:S167–75.

    Google Scholar 

  39. Scheen AJ. Pharmacokinetics, pharmacodynamics and clinical use of SGLT2 inhibitors in patients with type 2 diabetes mellitus and chronic kidney disease. Clin Pharmacokinetics. 2015;54:691–708. Springer International Publishing.

    Google Scholar 

  40. Milder TY, Stocker SL, Samocha-Bonet D, Day RO, Greenfield JR. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes—cardiovascular and renal benefits in patients with chronic kidney disease. Eur J Clin Pharmacol. 2019;75:1481–90. Springer Verlag.

    Google Scholar 

  41. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  Google Scholar 

  42. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  43. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with Empagliflozin in heart failure. N Engl J Med [Internet]. 2020; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32865377.

  44. Abstract title: Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease [Internet]. Available from: https://www.escardio.org/The-ESC/Press-Office/Press-releases/DAPA.

  45. Sharma D, Verma S, Vaidya S, Kalia K, Tiwari V. Recent updates on GLP1 agonists current advancements and challenges. Biomed Pharmacother. 2018;108:952–62.

    Article  CAS  PubMed  Google Scholar 

  46. Sloan LA. Review of glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes mellitus in patients with chronic kidney disease and their renal effects. J Diabetes. 2019;11:938–48. John Wiley and Sons Inc.

    Google Scholar 

  47. Ryan G, Briscoe T, Jobe L. Review of pramlintide as adjunctive therapy in treatment of type 1 AND type 2 diabetes. Drug Des Devel Ther. 2008;2:203–14.

    Article  CAS  Google Scholar 

  48. Odegard PS, Setter SM, Iltz JL. Update in the pharmacologic treatment of diabetes mellitus: focus on Pramlintide and Exenatide. Diabetes Educ. 2006;32(5):639–712.

    Article  Google Scholar 

  49. Kleppinger E, Vivian EM. Pramlintide for the treatment of diabetes mellitus. Ann Pharmacother. 2003;37:1082–9.

    Article  CAS  PubMed  Google Scholar 

  50. Holt RIG, Barnett AH, Bailey CJ. Bromocriptine: old drug, new formulation and new indication. Obe Metab [Internet]. 2010;12:1048–57. Available from: https://dom-pubs.onlinelibrary.wiley.com/reader/content/10.1111/j.1463-1326.2010.01304.

    Article  CAS  Google Scholar 

  51. Cincotta AH, Meier AH, Cincotta MJ. Bromocriptine improves glycaemic control and serum lipid profile in obese type 2 diabetic subjects: a new approach in the treatment of diabetes. Expert Opin Investig Drugs. 1999;8:1683–707.

    Google Scholar 

  52. Fonseca VA, Handelsman Y, Staels B. Colesevelam lowers glucose and lipid levels in type 2 diabetes: the clinical evidence. Diabetes Obes Metab. 2010;12:384–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Harper W, Clement M, Goldenberg R, Hanna A, Main A, Retnakaran R, et al. Pharmacologic Management of Type 2 diabetes. Can J Diabetes. 2013;37(SUPPL.1):61–8.

    Article  Google Scholar 

  54. Garla V, Yanes-Cardozo L, Lien LF. Current therapeutic approaches in the management of hyperglycemia in chronic renal disease. Rev Endocr Metab Disord. 2017;18:5–19. Springer New York LLC.

    Google Scholar 

  55. Tong L, Adler S. Glycemic control of type 2 diabetes mellitus across stages of renal impairment: information for primary care providers. Postgrad Med. 2018;130:381–93. Taylor and Francis Inc.

    Google Scholar 

  56. Nakao T, Inaba M, Abe M, Kaizu K, Shima K, Babazono T, et al. Best practice for diabetic patients on hemodialysis 2012. Ther Apher Dial. 2015;19(S1):40–66.

    Article  PubMed  Google Scholar 

  57. Adams GG, Meal A, Morgan PS, Alzahrani QE, Zobel H, Lithgo R, et al. Characterisation of insulin analogues therapeutically available to patients. PLoS One. 2018;13(3).

    Google Scholar 

  58. Iglesias P, Díez JJ. Insulin therapy in renal disease. Diabetes Obes Metab. 2008;10:811–23. Blackwell Publishing Ltd.

    Google Scholar 

  59. Freeman JS. Insulin analog therapy: improving the match with physiologic insulin secretion. J Am Osteopath Assoc. 2009;109(1):26–36.

    PubMed  Google Scholar 

  60. Rajput R, Sinha B, Majumdar S, Shunmugavelu M, Bajaj S. Consensus statement on insulin therapy in chronic kidney disease. Diabetes Res Clin Pract. 2017;127:10–20.

    Article  CAS  PubMed  Google Scholar 

  61. Hirsch IB. Insulin analogues. N Engl J Med. 2005;352:174–83.

    Article  CAS  PubMed  Google Scholar 

  62. de Boer IH, Caramori ML, Chan JCN, et al. Executive summary of the 2020 KDIGO diabetes management in CKD guideline: evidence-based advances in monitoring and treatment. Kidney Int. 2020;98:839–48.

    Google Scholar 

  63. Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care. 2009;32(7):1335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Seddik AA, Bashier A, Alhadari AK, AlAlawi F, Alnour HH, Bin Hussain AA, et al. Challenges in management of diabetic ketoacidosis in hemodialysis patients, case presentation and review of literature. Diabetes Metab Syndr Clin Res Rev. 2019;13:2481–7. Elsevier Ltd.

    Google Scholar 

  65. Sun Y, Roumelioti ME, Ganta K, Glew RH, Gibb J, Vigil D, et al. Dialysis-associated hyperglycemia: manifestations and treatment. Int Urol Nephrol. 2020;52:505–17.

    Google Scholar 

  66. Tzamaloukas AH, Khitan ZJ, Glew RH, Roumelioti ME, Rondon-Berrios H, Elisaf MS, et al. Serum sodium concentration and tonicity in hyperglycemic crises: major influences and treatment implications. J Am Heart Assoc. 2019;8(19):e011786.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Roumelioti ME, Sun Y, Ganta K, Gibb J, Tzamaloukas AH. Management of extracellular volume in patients with end-stage kidney disease and severe hyperglycemia. J Diabetes Complicat. 2020;34(8):107615.

    Article  Google Scholar 

  68. Galindo RJ, Pasquel FJ, Fayfman M, Tsegka K, Dhruv N, Cardona S, et al. Clinical characteristics and outcomes of patients with end-stage renal disease hospitalized with diabetes ketoacidosis. BMJ Open Diabetes Res Care. 2020;8(1):1–6.

    Article  Google Scholar 

  69. Gan T, Liu X, Xu G. Glycated albumin versus HbA1c in the evaluation of glycemic control in patients with diabetes and CKD. Kidney Int Rep. 2018;3:542–54. Elsevier Inc.

    Google Scholar 

  70. Seaquist ER, Anderson J, Childs B, Cryer P, Dagogo-Jack S, Fish L, et al. Hypoglycemia and diabetes: a report of a workgroup of the american diabetes association and the endocrine society. J Clin Endocrinol Metab. 2013;98(5):1845–59.

    Article  CAS  PubMed  Google Scholar 

  71. Gerich JE, Woerle HJ, Meyer C, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24:382–91.American Diabetes Association Inc.

    Google Scholar 

  72. Cherney DZ, Kanbay M, Lovshin JA. Renal physiology of glucose handling and therapeutic implications. Nephrol Dial Transplant. 2020;35(1):i3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armand A. Krikorian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krikorian, A.A., Calimag, A.P.P. (2022). Glycemic Control. In: Lerma, E.V., Batuman, V. (eds) Diabetes and Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-86020-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86020-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86019-6

  • Online ISBN: 978-3-030-86020-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics