Skip to main content

Advertisement

Log in

COVID-19 Vaccination and Cardiac Arrhythmias: A Review

  • Invasive Electrophysiology and Pacing (EK Heist, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we aim to delve into the existing literature, seeking to uncover the mechanisms, investigate the electrocardiographic changes, and examine the treatment methods of various cardiac arrhythmias that occur after administration of the COVID-19 vaccine.

Recent Findings

A global survey has exposed an incidence of arrhythmia in 18.27% of hospitalized COVID-19 patients. Furthermore, any type of COVID-19 vaccine — be it mRNA, adenovirus vector, whole inactivated, or protein subunit — appears to instigate cardiac arrhythmias. Among the cardiac adverse events reported post-COVID-19 vaccination, myocarditis emerges as the most common and is thought to be a potential cause of bradyarrhythmia. When a patient post-COVID-19 vaccination presents a suspicion of cardiac involvement, clinicians should perform a comprehensive history and physical examination, measure electrolyte levels, conduct ECG, and carry out necessary imaging studies.

Summary

In our extensive literature search, we uncovered various potential mechanisms that might lead to cardiac conduction abnormalities and autonomic dysfunction in patients who have received the COVID-19 vaccine. These mechanisms encompass direct viral invasion through molecular mimicry/spike (S) protein production, an escalated inflammatory response, hypoxia, myocardial cell death, and the eventual scar/fibrosis. They correspond to a range of conditions including atrial tachyarrhythmias, bradyarrhythmia, ventricular arrhythmias, sudden cardiac death, and the frequently occurring myocarditis. For treating these COVID-19 vaccination-induced arrhythmias, we should incorporate general treatment strategies, similar to those applied to arrhythmias from other causes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Coronavirus cases: Worldometer. (n.d.). https://www.worldometers.info/coronavirus/. Accessed 17 Jan 2023.

  2. WHO – COVID19 vaccine tracker. (n.d.). https://covid19.trackvaccines.org/agency/who/. Accessed 4 Feb 2023.

  3. Hana D, Patel K, Roman S, Gattas B, Sofka S. Clinical cardiovascular adverse events reported post-COVID-19 vaccination: are they a real risk? Curr Probl Cardiol. 2022;47(3):101077. https://doi.org/10.1016/j.cpcardiol.2021.101077.

    Article  PubMed  Google Scholar 

  4. Al-Ali D, Elshafeey A, Mushannen M, et al. Cardiovascular and haematological events post COVID-19 vaccination: a systematic review. J Cell Mol Med. 2022;26(3):636–53. https://doi.org/10.1111/jcmm.17137.

    Article  CAS  PubMed  Google Scholar 

  5. Bae S, Lee YW, Lim SY, et al. Adverse reactions following the first dose of ChAdOx1 nCoV-19 vaccine and BNT162b2 vaccine for healthcare workers in South Korea. J Korean Med Sci. 2021;36(17):e115. https://doi.org/10.3346/jkms.2021.36.e115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. • Sangpornsuk N, Rungpradubvong V, Tokavanich N, et al. Arrhythmias after SARS-CoV-2 vaccination in patients with a cardiac implantable electronic device: a multicenter study. Biomedicines. 2022;10(11):2838. https://doi.org/10.3390/biomedicines10112838. Findings from this study suggest that the incidence of arrhythmia in patients implanted with CIEDs was significantly increased after the SARS-CoV-2 vaccination.

  7. Kumar A, Shariff M, Bhat V, DeSimone C, Deshmukh A. Atrial fibrillation after vaccination for COVID-19: analysis of the vaccine adverse event reporting system. J Interv Card Electrophysiol. 2022;65(1):1–2. https://doi.org/10.1007/s10840-022-01263-4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Marco García MT, Torres Lana Á, Anta Agudo MB, Rufino Delgado MT. Tachycardia as an undescribed adverse effect to the Comirnaty© vaccine (BNT162b2 Pfizer-BioNTech Covid-19 vaccine): Description of 3 cases with a history of SARS-CoV-2 disease [published online ahead of print, 2021 Mar 18]. Taquicardia como efecto adverso no descrito en la vacuna Comirnaty© (vacuna COVID-19 mRNA BNT162b2 de Pfizer-BioNTech): descripción de 3 casos con antecedentes de SARS-CoV-2 [published online ahead of print, 2021 Mar 18]. Enferm Infecc Microbiol Clin (Engl Ed). 2021;40(5):276–7. https://doi.org/10.1016/j.eimc.2021.03.008.

  9. Jeet Kaur R, Dutta S, Charan J, et al. Cardiovascular adverse events reported from COVID-19 vaccines: a study based on WHO database. Int J Gen Med. 2021;14:3909–27. https://doi.org/10.2147/IJGM.S32434.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lindner D, Fitzek A, Bräuninger H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020;5(11):1281–5. https://doi.org/10.1001/jamacardio.2020.3551.

    Article  PubMed  Google Scholar 

  11. Brojakowska A, Narula J, Shimony R, Bander J. Clinical implications of SARS-CoV-2 interaction with renin angiotensin system: JACC review topic of the week. J Am Coll Cardiol. 2020;75(24):3085–95. https://doi.org/10.1016/j.jacc.2020.04.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lazzerini PE, Boutjdir M, Capecchi PL. COVID-19, Arrhythmic risk, and inflammation: mind the gap! Circulation. 2020;142(1):7–9. https://doi.org/10.1161/CIRCULATIONAHA.120.047293.

    Article  CAS  PubMed  Google Scholar 

  13. Dherange P, Lang J, Qian P, et al. Arrhythmias and COVID-19: a review. JACC Clin Electrophysiol. 2020;6(9):1193–204. https://doi.org/10.1016/j.jacep.2020.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen T, Dai Z, Mo P, et al. Clinical characteristics and outcomes of older patients with coronavirus disease 2019 (COVID-19) in Wuhan, China: a single-centered, retrospective study. J Gerontol A Biol Sci Med Sci. 2020;75(9):1788–95. https://doi.org/10.1093/gerona/glaa089.

    Article  CAS  PubMed  Google Scholar 

  15. Goette A, Patscheke M, Henschke F, Hammwöhner M. COVID-19-induced cytokine release syndrome associated with pulmonary vein thromboses, atrial cardiomyopathy, and arterial intima inflammation. TH Open. 2020;4(3):e271–9. https://doi.org/10.1055/s-0040-1716717.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Karamchandani K, Quintili A, Landis T, Bose S. Cardiac arrhythmias in critically Ill patients with COVID-19: a brief review. J Cardiothorac Vasc Anesth. 2021;35(12):3789–96. https://doi.org/10.1053/j.jvca.2020.08.013.

    Article  CAS  PubMed  Google Scholar 

  17. Roden DM, Harrington RA, Poppas A, Russo AM. Considerations for drug interactions on QTc interval in exploratory COVID-19 treatment. Heart Rhythm. 2020;17(7):e231–2. https://doi.org/10.1016/j.hrthm.2020.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Saha SA, Russo AM, Chung MK, Deering TF, Lakkireddy D, Gopinathannair R. COVID-19 and cardiac arrhythmias: a contemporary review. Curr Treat Options Cardiovasc Med. 2022;24(6):87–107. https://doi.org/10.1007/s11936-022-00964-3.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Awwab H, Solorzano JI, Jaisingh KC, Singireddy S, Bailey S, Dominic P. Cardiac pauses in critically ill coronavirus disease-2019 patients. Heart and Mind. 2021;5(1):4.

    Article  Google Scholar 

  20. AstraZeneca. COVID-19 vaccine AstraZeneca analysis print; 30 May 2021 [updated May 20, 2021]. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/972833/COVID-19_AstraZeneca_Vaccine_Analysis_Print.pdf.

  21. Thomas SJ, Moreira ED Jr, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine through 6 months. N Engl J Med. 2021;385(19):1761–73. https://doi.org/10.1056/NEJMoa2110345.

    Article  CAS  PubMed  Google Scholar 

  22. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403–16. https://doi.org/10.1056/NEJMoa2035389.

    Article  CAS  PubMed  Google Scholar 

  23. Sadoff J, Davis K, Douoguih M. Thrombotic thrombocytopenia Ad26.COV2.S after vaccination - response from the manufacturer. N Engl J Med. 2021;384(20):1965–6. https://doi.org/10.1056/NEJMc2106075.

    Article  CAS  PubMed  Google Scholar 

  24. Schultz NH, Sørvoll IH, Michelsen AE, et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;384(22):2124–30. https://doi.org/10.1056/NEJMoa2104882.

    Article  CAS  PubMed  Google Scholar 

  25. Cines DB, Bussel JB. SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia [published correction appears in N Engl J Med. 2021 Jun 10;384(23):e92]. N Engl J Med. 2021;384(23):2254–6. https://doi.org/10.1056/NEJMe2106315.

    Article  CAS  PubMed  Google Scholar 

  26. Liu M, Gu C, Wu J, Zhu Y. Amino acids 1 to 422 of the spike protein of SARS associated coronavirus are required for induction of cyclooxygenase-2. Virus Genes. 2006;33(3):309–17. https://doi.org/10.1007/s11262-005-0070-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rocca B, Secchiero P, Ciabattoni G, et al. Cyclooxygenase-2 expression is induced during human megakaryopoiesis and characterizes newly formed platelets. Proc Natl Acad Sci U S A. 2002;99(11):7634–9. https://doi.org/10.1073/pnas.112202999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bautista García J, Peña Ortega P, Bonilla Fernández JA, Cárdenes León A, Ramírez Burgos L, Caballero DE. Acute myocarditis after administration of the BNT162b2 vaccine against COVID-19. Rev Esp Cardiol (Engl Ed). 2021;74(9):812–4. https://doi.org/10.1016/j.rec.2021.04.005.

    Article  PubMed  Google Scholar 

  29. Ammirati E, Cavalotti C, Milazzo A, et al. Temporal relation between second dose BNT162b2 mRNA COVID-19 vaccine and cardiac involvement in a patient with previous SARS-COV-2 infection [published online ahead of print, 2021 Apr 5]. Int J Cardiol Heart Vasc. 2021;100778. https://doi.org/10.1016/j.ijcha.2021.100778.

  30. Ling RR, Ramanathan K, Tan FL, et al. Myopericarditis following COVID-19 vaccination and non-COVID-19 vaccination: a systematic review and meta-analysis [published correction appears in Lancet Respir Med. 2022 May 10]. Lancet Respir Med. 2022;10(7):679–88. https://doi.org/10.1016/S2213-2600(22)00059-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Talotta R. Do COVID-19 RNA-based vaccines put at risk of immune-mediated diseases? In reply to “potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases.” Clin Immunol. 2021;224:108665. https://doi.org/10.1016/j.clim.2021.108665.

    Article  CAS  PubMed Central  Google Scholar 

  32. Vojdani A, Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin Immunol. 2020;217:108480. https://doi.org/10.1016/j.clim.2020.108480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goriely S, Goldman M. From tolerance to autoimmunity: is there a risk in early life vaccination? J Comp Pathol. 2007;137(Suppl 1):S57–61. https://doi.org/10.1016/j.jcpa.2007.04.013.

    Article  CAS  PubMed  Google Scholar 

  34. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2018;15(10):e73–189. https://doi.org/10.1016/j.hrthm.2017.10.036. Epub 2017 Oct 30. Erratum in: Heart Rhythm. 2018 Sep 26; PMID: 29097319.

    Article  PubMed  Google Scholar 

  35. Rodney E, Parente T, Vasavada BC, Sacchi TJ. Life-threatening ventricular arrhythmias in patients with silent myocardial ischemia due to coronary-artery spasm. N Engl J Med. 1992;327(13):956–7.

    Article  CAS  PubMed  Google Scholar 

  36. Bassareo PP, Mihali K, Walsh KP. Ventricular tachycardia triggered by the first dose of an adenoviral vector-based COVID-19 vaccine in an adult patient with congenital heart disease. Clin Case Rep. 2022;10(9):e6064. https://doi.org/10.1002/ccr3.6064.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Abrich VA, Olshansky B. Torsades de pointes following vaccination for COVID-19. HeartRhythm Case Rep. 2022;8(6):393–7. https://doi.org/10.1016/j.hrcr.2022.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sirajuddin K, Ahmed M, Enazi SS. ventricular tachycardia related to COVID-19 vaccine in healthy individual. J Am Coll Cardiol. 2022;79(9):2332. https://doi.org/10.1016/S0735-1097(22)03323-X.

    Article  CAS  PubMed Central  Google Scholar 

  39. Wu N, Xu B, Xiang Y, et al. Association of inflammatory factors with occurrence and recurrence of atrial fibrillation: a meta-analysis. Int J Cardiol. 2013;169(1):62–72. https://doi.org/10.1016/j.ijcard.2013.08.078.

    Article  PubMed  Google Scholar 

  40. Ouldali N, Bagheri H, Salvo F, et al. Hyper inflammatory syndrome following COVID-19 mRNA vaccine in children: a national post-authorization pharmacovigilance study [published correction appears in Lancet Reg Health Eur. 2022 Oct;21:100468]. Lancet Reg Health Eur. 2022;2022(17):100393. https://doi.org/10.1016/j.lanepe.2022.100393.

    Article  Google Scholar 

  41. Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol. 2021;21(4):195–7. https://doi.org/10.1038/s41577-021-00526-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. •• Shams P, Ali J, Saadia S, Khan AH, Sultan FAT, Tai J. COVID-19 BBIBP-CorV vaccine and transient heart block - a phenomenon by chance or a possible correlation - a case report. Ann Med Surg (Lond). 2021;71:102956. https://doi.org/10.1016/j.amsu.2021.102956. Findings from this study suggest that humoral response towards the vaccine might interfere with the conduction system of the heart and more so in patients with diseased and scarred myocardium.

  43. Etienne H, Charles P, Pierre T. Transient but recurrent complete heart block in a patient after COVID-19 vaccination - a case report. Ann Med Surg (Lond). 2022;78:103694. https://doi.org/10.1016/j.amsu.2022.103694.

    Article  PubMed  Google Scholar 

  44. Li H, Yu X, Liles C, et al. Autoimmune basis for postural tachycardia syndrome. J Am Heart Assoc. 2014;3(1):e000755. https://doi.org/10.1161/JAHA.113.000755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mustafa HI, Garland EM, Biaggioni I, et al. Abnormalities of angiotensin regulation in postural tachycardia syndrome. Heart Rhythm. 2011;8(3):422–8. https://doi.org/10.1016/j.hrthm.2010.11.009.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Segal Y, Shoenfeld Y. Vaccine-induced autoimmunity: the role of molecular mimicry and immune crossreaction. Cell Mol Immunol. 2018;15(6):586–94. https://doi.org/10.1038/cmi.2017.151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fedorowski A. Postural orthostatic tachycardia syndrome: clinical presentation, aetiology and management. J Intern Med. 2019;285(4):352–66. https://doi.org/10.1111/joim.12852.

    Article  CAS  PubMed  Google Scholar 

  48. Dubey D, Hopkins S, Vernino S. M1 and M2 muscarinic receptor antibodies among patients with postural orthostatic tachycardia syndrome: potential disease biomarker. J Clin Neuromuscul Dis. 2016;17(3):179S.

    Google Scholar 

  49. Reddy S, Reddy S, Arora M. A case of postural orthostatic tachycardia syndrome secondary to the messenger RNA COVID-19 vaccine. Cureus. 2021;13(5):e14837. https://doi.org/10.7759/cureus.14837.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhao YH, Zhao L, Yang XC, Wang P. Cardiovascular complications of SARS-CoV-2 infection (COVID-19): a systematic review and meta-analysis. Rev Cardiovasc Med. 2021;22(1):159–65. https://doi.org/10.31083/j.rcm.2021.01.238.

    Article  PubMed  Google Scholar 

  51. Sahranavard M, Akhavan Rezayat A, Zamiri Bidary M, et al. Cardiac complications in COVID-19: a systematic review and meta-analysis. Arch Iran Med. 2021;24(2):152–63. https://doi.org/10.34172/aim.2021.24.

    Article  PubMed  Google Scholar 

  52. Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352–71. https://doi.org/10.1016/j.jacc.2020.03.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Coromilas EJ, Kochav S, Goldenthal I, et al. Worldwide survey of COVID-19-associated arrhythmias. Circ Arrhythm Electrophysiol. 2021;14(3):8e00945. https://doi.org/10.1161/CIRCEP.120.009458.

    Article  CAS  Google Scholar 

  54. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan China [published correction appears in JAMA. 2021 Mar 16;325(11):1113]. JAMA. 2020;323(11):1061–9. https://doi.org/10.1001/jama.2020.1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sala S, Peretto G, De Luca G, et al. Low prevalence of arrhythmias in clinically stable COVID-19 patients. Pacing Clin Electrophysiol. 2020;43(8):891–3. https://doi.org/10.1111/pace.13987.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of COVID-19 in New York City. N Engl J Med. 2020;382(24):2372–4. https://doi.org/10.1056/NEJMc2010419.

    Article  PubMed  Google Scholar 

  57. Gopinathannair R, Merchant FM, Lakkireddy DR, et al. COVID-19 and cardiac arrhythmias: a global perspective on arrhythmia characteristics and management strategies. J Interv Card Electrophysiol. 2020;59(2):329–36. https://doi.org/10.1007/s10840-020-00789-9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ergün B, Ergan B, Sözmen MK, et al. New-onset atrial fibrillation in critically ill patients with coronavirus disease 2019 (COVID-19). J Arrhythm. 2021;37(5):1196–204. https://doi.org/10.1002/joa3.1261.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mountantonakis SE, Saleh M, Fishbein J, et al. Atrial fibrillation is an independent predictor for in-hospital mortality in patients admitted with SARS-CoV-2 infection. Heart Rhythm. 2021;18(4):501–7. https://doi.org/10.1016/j.hrthm.2021.01.018.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Musikantow DR, Turagam MK, Sartori S, et al. Atrial fibrillation in patients hospitalized with COVID-19: incidence, predictors, outcomes, and comparison to influenza. JACC Clin Electrophysiol. 2021;7(9):1120–30. https://doi.org/10.1016/j.jacep.2021.02.009.

    Article  PubMed Central  Google Scholar 

  61. Bhatla A, Mayer MM, Adusumalli S, et al. COVID-19 and cardiac arrhythmias. Heart Rhythm. 2020;17(9):1439–44. https://doi.org/10.1016/j.hrthm.2020.06.016.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19) [published correction appears in JAMA Cardiol. 2020 Jul 1;5(7):848]. JAMA Cardiol. 2020;5(7):811–8. https://doi.org/10.1001/jamacardio.2020.1017.

    Article  PubMed  Google Scholar 

  63. Bertini M, Ferrari R, Guardigli G, et al. Electrocardiographic features of 431 consecutive, critically ill COVID-19 patients: an insight into the mechanisms of cardiac involvement. Europace. 2020;22(12):1848–54. https://doi.org/10.1093/europace/euaa258.

    Article  PubMed  Google Scholar 

  64. Alareedh M, Nafakhi H, Shaghee F, Nafakhi A. Electrocardiographic markers of increased risk of sudden cardiac death in patients with COVID-19 pneumonia. Ann Noninvasive Electrocardiol. 2021;26(3):e12824. https://doi.org/10.1111/anec.12824.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chorin E, Wadhwani L, Magnani S, et al. QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/azithromycin. Heart Rhythm. 2020;17(9):1425–33. https://doi.org/10.1016/j.hrthm.2020.05.014.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Saleh M, Gabriels J, Chang D, et al. Effect of chloroquine, hydroxychloroquine, and azithromycin on the corrected QT interval in patients With SARS-CoV-2 infection. Circ Arrhythm Electrophysiol. 2020;13(6):e008662. https://doi.org/10.1161/CIRCEP.120.008662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mercuro NJ, Yen CF, Shim DJ, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19) [published correction appears in JAMA Cardiol. 2020 Sep 1;5(9):1071]. JAMA Cardiol. 2020;5(9):1036–41. https://doi.org/10.1001/jamacardio.2020.1834.

    Article  PubMed  Google Scholar 

  68. Chorin E, Dai M, Shulman E, et al. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nat Med. 2020;26(6):808–9. https://doi.org/10.1038/s41591-020-0888-2.

    Article  CAS  PubMed  Google Scholar 

  69. Nagamine T, Randhawa S, Nishimura Y, et al. Characteristics of bradyarrhythmia in patients with COVID-19: systematic scoping review. Pacing Clin Electrophysiol. 2022;45(4):556–66. https://doi.org/10.1111/pace.14466.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Abid M, Ben Abdessalem MA, Elmenif K, et al. Sinus bradycardia: an unusual manifestation of mild to moderate COVID-19 pneumonia. Tunis Med. 2020;98(12):886–7.

    PubMed  Google Scholar 

  71. Antwi-Amoabeng D, Beutler BD, Singh S, et al. Association between electrocardiographic features and mortality in COVID-19 patients. Ann Noninvasive Electrocardiol. 2021;26(4):e12833. https://doi.org/10.1111/anec.12833.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rav-Acha M, Orlev A, Itzhaki I, et al. Cardiac arrhythmias amongst hospitalised coronavirus 2019 (COVID-19) patients: Prevalence, characterisation, and clinical algorithm to classify arrhythmic risk. Int J Clin Pract. 2021;75(4):e13788. https://doi.org/10.1111/ijcp.13788.

    Article  CAS  PubMed  Google Scholar 

  73. Chinitz JS, Goyal R, Harding M, et al. Bradyarrhythmias in patients with COVID-19: marker of poor prognosis? Pacing Clin Electrophysiol. 2020;43(10):1199–204. https://doi.org/10.1111/pace.14042.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shrivastava A, Pandit BN, Thakur AK, Nath RK, Aggarwal P. Epidemiological, demographic, laboratory, clinical management, and outcome data of symptomatic bradyarrhythmia in COVID-19 patients. Cirugía Cardiovascular. 2021;28(3):144–50. https://doi.org/10.1016/j.circv.2021.01.008.

    Article  PubMed Central  Google Scholar 

  75. Gupta MD, Qamar A, Mp G, et al. Bradyarrhythmias in patients with COVID-19: a case series. Indian Pacing Electrophysiol J. 2020;20(5):211–2. https://doi.org/10.1016/j.ipej.2020.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Al-Assaf O, Mirza M, Musa A. Atypical presentation of COVID-19 as subclinical myocarditis with persistent high-degree atrioventricular block treated with pacemaker implant. HeartRhythm Case Rep. 2020;6(11):884–7. https://doi.org/10.1016/j.hrcr.2020.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bozkurt B, Kamat I, Hotez PJ. Myocarditis with COVID-19 mRNA vaccines. Circulation. 2021;144(6):471–84. https://doi.org/10.1161/CIRCULATIONAHA.121.056135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chua GT, Tsao S, Kwan MYW, et al. Medium-term outcomes of myocarditis and pericarditis following BNT162b2 vaccination among adolescents in Hong Kong. Emerg Microbes Infect. 2022;11(1):2466–73. https://doi.org/10.1080/22221751.2022.2128436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heidecker B, Dagan N, Balicer R, et al. Myocarditis following COVID-19 vaccine: incidence, presentation, diagnosis, pathophysiology, therapy, and outcomes put into perspective. A clinical consensus document supported by the Heart Failure Association of the European Society of Cardiology (ESC) and the ESC Working Group on Myocardial and Pericardial Diseases [published correction appears in Eur J Heart Fail. 2023 Mar;25(3):443]. Eur J Heart Fail. 2022;24(11):2000–18. https://doi.org/10.1002/ejhf.2669.

    Article  PubMed  Google Scholar 

  80. Luk A, Clarke B, Dahdah N, et al. Myocarditis and pericarditis after COVID-19 mRNA vaccination: practical considerations for care providers. Can J Cardiol. 2021;37(10):1629–34. https://doi.org/10.1016/j.cjca.2021.08.001.

    Article  PubMed  Google Scholar 

  81. Azir M, Inman B, Webb J, Tannenbaum L. STEMI mimic: focal myocarditis in an adolescent patient after mRNA COVID-19 vaccine. J Emerg Med. 2021;61(6):e129–32. https://doi.org/10.1016/j.jemermed.2021.09.017.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Snapiri O, Rosenberg Danziger C, Shirman N, et al. Transient cardiac injury in adolescents receiving the BNT162b2 mRNA COVID-19 vaccine. Pediatr Infect Dis J. 2021;40(10):e360–3. https://doi.org/10.1097/INF.0000000000003235.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pfizer-BioNTech. Full emergency use authorization (EUA) prescribing information. n.d. https://www.Labeling.Pfizer.com. Accessed 15 May 2021.

  84. Li YE, Wang S, Reiter RJ, Ren J. Clinical cardiovascular emergencies and the cellular basis of COVID-19 vaccination: from dream to reality? Int J Infect Dis. 2022;124:1–10. https://doi.org/10.1016/j.ijid.2022.08.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park J, Brekke DR, Bratincsak A. Self-limited myocarditis presenting with chest pain and ST segment elevation in adolescents after vaccination with the BNT162b2 mRNA vaccine. Cardiol Young. 2022;32(1):146–9. https://doi.org/10.1017/S1047951121002547.

    Article  PubMed  Google Scholar 

  86. Saeed S, Käsk L, Rajani R, Larsen TH. Incidence, clinical presentation, and management of myocarditis following mRNA-based COVID-19 vaccines: a brief report. Cardiology. 2022;147(4):406–12. https://doi.org/10.1159/000522216.

    Article  CAS  PubMed  Google Scholar 

  87. Won T, Gilotra NA, Wood MK, et al. Increased interleukin 18-dependent immune responses are associated with myopericarditis after COVID-19 mRNA vaccination. Front Immunol. 2022;13:851620. https://doi.org/10.3389/fimmu.2022.851620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fazlollahi A, Zahmatyar M, Noori M, et al. Cardiac complications following mRNA COVID-19 vaccines: a systematic review of case reports and case series. Rev Med Virol. 2022;32(4):e2318. https://doi.org/10.1002/rmv.2318.

    Article  CAS  PubMed  Google Scholar 

  89. Vogler J, Breithardt G, Eckardt L. Bradyarrhythmias and conduction blocks. Rev Esp Cardiol (Engl Ed). 2012;65(7):656–67. https://doi.org/10.1016/j.recesp.2012.01.025.

    Article  PubMed  Google Scholar 

  90. Nashashibi S, Priesler O, Levinger U, Habib G. High degree atrio-ventricular block following COVID-19 vaccination. Isr Med Assoc J. 2022;24(10):627–8.

    PubMed  Google Scholar 

  91. Mehrabi Nasab E, Athari SS. Reporting complete heart block in a patient with polyarteritis nodosa after COVID-19 vaccination. ESC Heart Fail. 2023;10(2):1418–21. https://doi.org/10.1002/ehf2.14227.

    Article  PubMed  Google Scholar 

  92. Lin W, Yip ACL, Evangelista LKM, et al. Ventricular tachycardia from myocarditis following COVID-19 vaccination with tozinameran (BNT162b2, Pfizer-BioNTech). Pacing Clin Electrophysiol. 2022;45:1097–100. https://doi.org/10.1111/pace.14486.

    Article  PubMed  Google Scholar 

  93. Peretto G, Sala S, Rizzo S, et al. Ventricular arrhythmias in myocarditis: characterization and relationships with myocardial inflammation. J Am Coll Cardiol. 2020;75(9):1046–57. https://doi.org/10.1016/j.jacc.2020.01.036.

    Article  PubMed  Google Scholar 

  94. John RM, Tedrow UB, Koplan BA, et al. Ventricular arrhythmias and sudden cardiac death. Lancet. 2012;380(9852):1520–9. https://doi.org/10.1016/S0140-6736(12)61413-5.

    Article  PubMed  Google Scholar 

  95. Feldman AM, McNamara D. Myocarditis. N Engl J Med. 2000;343(19):1388–98. https://doi.org/10.1056/NEJM200011093431908.

    Article  CAS  PubMed  Google Scholar 

  96. Ali-Ahmed F, Dalgaard F, Al-Khatib SM. Sudden cardiac death in patients with myocarditis: evaluation, risk stratification, and management. Am Heart J. 2020;220:29–40. https://doi.org/10.1016/j.ahj.2019.08.007.

    Article  CAS  PubMed  Google Scholar 

  97. Chu PL, Chang WT, Chen WJ, Chen YS. Acute viral myocarditis presenting as sudden cardiac arrest and refractory ventricular tachycardia. Am J Emerg Med. 2004;22(7):628–9. https://doi.org/10.1016/j.ajem.2004.09.017.

    Article  PubMed  Google Scholar 

  98. FDA briefing document: Pfizer-BioNTech COVID-19 vaccine. Vaccines and related biological products advisory committee meeting; [updated March 8, 2021]. https://www.fda.gov/media/144245/download.

  99. United States Department of Health and Human Services (DHHS), Public Health Service (PHS), Centers for Disease Control (CDC) / Food and Drug Administration (FDA), Vaccine Adverse Event Reporting System (VAERS) 1990 - 02/03/2023, CDC WONDER On-line Database. http://wonder.cdc.gov/vaers.html. Accessed 16 Feb 2023 12:41:38 AM.

  100. Sun CLF, Jaffe E, Levi R. Increased emergency cardiovascular events among under-40 population in Israel during vaccine rollout and third COVID-19 wave. Sci Rep. 2022;12(1):6978. https://doi.org/10.1038/s41598-022-10928-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Park S, Kim MK, Baek K. Sudden cardiac death caused by cardiac small vessel vasculitis after COVID-19 vaccination (BNT162b2 nCov-19): a case report. Korean Journal of Legal Medicine. 2021;45(4):133–8. https://doi.org/10.7580/kjlm.2021.45.4.133.

    Article  Google Scholar 

  102. Etheridge SP, Asaki SY. COVID-19 Infection and corrected QT interval prolongation-collateral damage from our newest enemy. JAMA Netw Open. 2021;4(4):e217192. https://doi.org/10.1001/jamanetworkopen.2021.7192.

    Article  PubMed  Google Scholar 

  103. Adler A, Topaz G, Heller K, et al. Fever-induced Brugada pattern: how common is it and what does it mean? Heart Rhythm. 2013;10(9):1375–82. https://doi.org/10.1016/j.hrthm.2013.07.030.

    Article  PubMed  Google Scholar 

  104. Amin AS, Meregalli PG, Bardai A, Wilde AA, Tan HL. Fever increases the risk for cardiac arrest in the Brugada syndrome. Ann Intern Med. 2008;149(3):216–8. https://doi.org/10.7326/0003-4819-149-3-200808050-00020.

    Article  PubMed  Google Scholar 

  105. Ittiwut C, Mahasirimongkol S, Srisont S, et al. Genetic basis of sudden death after COVID-19 vaccination in Thailand [published online ahead of print, 2022 Aug 5]. Heart Rhythm. 2022;19(11):1874–9. https://doi.org/10.1016/j.hrthm.2022.07.019.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Baronti A, Gentile F, Manetti AC, et al. Myocardial infarction following COVID-19 vaccine administration: post hoc, ergo propter hoc? Viruses. 2022;14(8):1644. https://doi.org/10.3390/v14081644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gill JR, Tashjian R, Duncanson E. Autopsy histopathologic cardiac findings in 2 adolescents following the second COVID-19 vaccine dose. Arch Pathol Lab Med. 2022;146(8):925–9. https://doi.org/10.5858/arpa.2021-0435-SA.

    Article  CAS  PubMed  Google Scholar 

  108. • Paknahad MH, Yancheshmeh FB, Soleimani A. Cardiovascular complications of COVID-19 vaccines: a review of case-report and case-series studies. Heart Lung. 2023;59:173–80. https://doi.org/10.1016/j.hrtlng.2023.02.003. Findings of this study suggest that myocarditis (with overall rate around 1.62%) was shown to be the most common post-COVID-19 immunization cardiac event. More than 90% of post-COVID-19 vaccination myocarditis occurred after receiving mRNA vaccines (Moderna & Pfizer-BioNTech), but the report of this event was less in the case of vector-based vaccinations and/or inactivated vaccines.

  109. Blitshteyn S, Whitelaw S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients [published correction appears in Immunol Res. 2021 Apr 13]. Immunol Res. 2021;69(2):205–11. https://doi.org/10.1007/s12026-021-09185-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shouman K, Vanichkachorn G, Cheshire WP, et al. Autonomic dysfunction following COVID-19 infection: an early experience. Clin Auton Res. 2021;31(3):385–94. https://doi.org/10.1007/s10286-021-00803-8.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Desai AD, Boursiquot BC, Moore CJ, et al. Autonomic dysfunction post-acute COVID-19 infection. HeartRhythm Case Rep. 2022;8(3):143–6. https://doi.org/10.1016/j.hrcr.2021.11.019.

    Article  PubMed  Google Scholar 

  112. Goldstein DS. The possible association between COVID-19 and postural tachycardia syndrome. Heart Rhythm. 2021;18(4):508–9. https://doi.org/10.1016/j.hrthm.2020.12.007.

    Article  PubMed  Google Scholar 

  113. Am E, Mt N. Postural orthostatic tachycardia syndrome after mRNA COVID-19 vaccine. Clinical autonomic research : official journal of the Clinical Autonomic Research Society. 2022;32(4). https://doi.org/10.1007/s10286-022-00880-3.

  114. Park J, Kim S, Lee J, An JY. A case of transient POTS following COVID-19 vaccine. Acta Neurol Belg. 2022;122(4):1081–3. https://doi.org/10.1007/s13760-022-02002-2.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Sanada Y, Azuma J, Hirano Y, Hasegawa Y, Yamamoto T. Overlapping myocarditis and postural orthostatic tachycardia syndrome after COVID-19 messenger RNA vaccination: a case report. Cureus. 2022;14(11):e31006. https://doi.org/10.7759/cureus.31006.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Maharaj N, Swarath S, Seecheran R, et al. Suspected COVID-19 mRNA vaccine-induced postural orthostatic tachycardia syndrome. Cureus. 2023;15(1). https://doi.org/10.7759/cureus.34236.

  117. Hermel M, Sweeney M, Abud E, et al. COVID-19 vaccination might induce postural orthostatic tachycardia syndrome: a case report. Vaccines (Basel). 2022;10(7):991. https://doi.org/10.3390/vaccines10070991.

    Article  CAS  PubMed  Google Scholar 

  118. Karimi Galougahi K. Autonomic dysfunction post-inoculation with ChAdOx1 nCoV-19 vaccine. Eur Heart J Case Rep. 2021;5(12):ytab472. https://doi.org/10.1093/ehjcr/ytab472.

    Article  Google Scholar 

  119. Koh JS, Hoe RHM, Yong MH, et al. Hospital-based observational study of neurological disorders in patients recently vaccinated with COVID-19 mRNA vaccines. J Neurol Sci. 2021;430:120030. https://doi.org/10.1016/j.jns.2021.120030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Biassoni E, Assini A, Gandoglia I, et al. The importance of thinking about Guillain-Barré syndrome during the COVID-19 pandemic: a case with pure dysautonomic presentation. J Neurovirol. 2021;27(4):662–5. https://doi.org/10.1007/s13365-021-00997-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bellucci M, Germano F, Grisanti S, et al. Case Report: Post-COVID-19 Vaccine recurrence of Guillain-Barré syndrome following an antecedent parainfectious COVID-19-related GBS. Front Immunol. 2022;13:894872. https://doi.org/10.3389/fimmu.2022.894872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lanman TA, Wu C, Cheung H, Goyal N, Greene M. Guillain-Barré syndrome with rapid onset and autonomic dysfunction following first dose of Pfizer-BioNTech COVID-19 vaccine: a case report. Neurohospitalist. 2022;12(2):388–90.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Tabatabaee S, Rezania F, Alwedaie SMJ, et al. Post COVID-19 vaccination Guillain-Barre syndrome: three cases. Hum Vaccin Immunother. 2022;18(5):2045153. https://doi.org/10.1080/21645515.2022.2045153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Teo HK, Ho KL, Tan BY, Ching CK, Chong DTT. A racing heart post-Pfizer/BioNTech BNT162b2. J Arrhythm. 2022;38(5):827–30. https://doi.org/10.1002/joa3.12773.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Waheed S, Bayas A, Hindi F, Rizvi Z, Espinosa PS. Neurological complications of COVID-19: Guillain-Barre syndrome following Pfizer COVID-19 vaccine. Cureus. 2021;13(2):e13426. https://doi.org/10.7759/cureus.13426.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Allen CM, Ramsamy S, Tarr AW, et al. Guillain-Barré syndrome variant occurring after SARS-CoV-2 vaccination. Ann Neurol. 2021;90(2):315–8. https://doi.org/10.1002/ana.26144.

    Article  CAS  PubMed  Google Scholar 

  127. Patel SU, Khurram R, Lakhani A, Quirk B. Guillain-Barre syndrome following the first dose of the chimpanzee adenovirus-vectored COVID-19 vaccine, ChAdOx1. BMJ Case Rep. 2021;14(4):e242956. https://doi.org/10.1136/bcr-2021-242956.

    Article  PubMed  Google Scholar 

  128. Kwon CY, Lee B. Impact of COVID-19 vaccination on heart rate variability: a systematic review. Vaccines (Basel). 2022;10(12):2095. https://doi.org/10.3390/vaccines10122095.

    Article  CAS  PubMed  Google Scholar 

  129. Naeem FN, Hasan SFS, Ram MD, Waseem S, Ahmed SH, Shaikh TG. The association between SARS-CoV-2 vaccines and transverse myelitis: a review. Ann Med Surg (Lond). 2022;79:103870. https://doi.org/10.1016/j.amsu.2022.103870.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kwan AC, Ebinger JE, Wei J, et al. Apparent risks of postural orthostatic tachycardia syndrome diagnoses after COVID-19 vaccination and SARS-Cov-2 Infection. Nat Cardiovasc Res. 2022;1(12):1187–94. https://doi.org/10.1038/s44161-022-00177-8.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Jost K, Rodriguez B, Söll N, Hoepner R, Z’Graggen W. Tolerability of COVID-19 mRNA vaccines in patients with postural tachycardia syndrome: a cross-sectional stud. Published online 2022. https://doi.org/10.12688/f1000research.109373.1.

  132. Marshall M, Ferguson ID, Lewis P, et al. Symptomatic acute myocarditis in 7 adolescents after Pfizer-BioNTech COVID-19 vaccination. Pediatrics. 2021;148(3):e2021052478. https://doi.org/10.1542/peds.2021-052478.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paari Dominic.

Ethics declarations

Conflict of Interest

Rakesh Gopinathannair reports being a consultant for Abbott, a speaker for Sanofi, and on the advisory board for Pacemate. Brian Olshansky reports being on the Data and Safety Monitoring Board for AstraZeneca. Paari Dominic reports a patent on “Gasotransmitters and Atrial Fibrillation” issued to Paari Dominic and Christopher Kevil and a patent on “Gasotransmitters and COVID-19 infection” pending to Paari Dominic, Christopher Kevil, Gopi K Kolluru, and A Wayne Orr. The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pari, B., Babbili, A., Kattubadi, A. et al. COVID-19 Vaccination and Cardiac Arrhythmias: A Review. Curr Cardiol Rep 25, 925–940 (2023). https://doi.org/10.1007/s11886-023-01921-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01921-7

Keywords

Navigation