Skip to main content

Advertisement

Log in

Fibroblast and Immune Cell Cross-Talk in Cardiac Fibrosis

  • Regenerative Medicine (SM Wu, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The intricate interplay between inflammatory and reparative responses in the context of heart injury is central to the pathogenesis of heart failure. Recent clinical studies have shown the therapeutic benefits of anti-inflammatory strategies in the treatment of cardiovascular diseases. This review provides a comprehensive overview of the cross-talk between immune cells and fibroblasts in the diseased heart.

Recent Findings

The role of inflammatory cells in fibroblast activation after cardiac injury is well-documented, but recent single-cell transcriptomics studies have identified putative pro-inflammatory fibroblasts in the infarcted heart, suggesting that fibroblasts, in turn, can modify inflammatory cell behavior. Furthermore, anti-inflammatory immune cells and fibroblasts have been described. The use of spatial and temporal-omics analyses may provide additional insights toward a better understanding of disease-specific microenvironments, where activated fibroblasts and inflammatory cells are in proximity.

Summary

Recent studies focused on the interplay between fibroblasts and immune cells have brought us closer to the identification of cell type–specific targets for intervention. Further exploration of these intercellular communications will provide deeper insights toward the development of novel therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics—2022 update: a report from the American Heart Association. Circulation. 2022;145:e153–639.

    Article  PubMed  Google Scholar 

  2. Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2020;117:1450–88.

    Article  PubMed Central  Google Scholar 

  3. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145:e895–1032.

    PubMed  Google Scholar 

  4. Kuwabara JT, Hara A, Bhutada S, et al. Consequences of PDGFRa+ fibroblast reduction in adult murine hearts. Elife. 2022. https://doi.org/10.7554/elife.69854.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tallquist MD, Molkentin JD. Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol. 2017;14:484–91.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tallquist MD. Cardiac fibroblast diversity. Annu Rev Physiol. 2020;82:63–78.

    Article  CAS  PubMed  Google Scholar 

  7. Adamo L, Rocha-Resende C, Prabhu SD, Mann DL. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol. 2020;17:269–85.

    Article  PubMed  Google Scholar 

  8. Rurik JG, Aghajanian H, Epstein JA. Immune cells and immunotherapy for cardiac injury and repair. Circ Res. 2021;128:1766–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bliksøen M, Mariero LH, Torp MK, Baysa A, Ytrehus K, Haugen F, Seljeflot I, Vaage J, Valen G, Stensløkken K-O. Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol. 2016;111:42.

    Article  PubMed  Google Scholar 

  10. Lipps C, Nguyen JH, Pyttel L, et al. N-terminal fragment of cardiac myosin binding protein-C triggers pro-inflammatory responses in vitro. J Mol Cell Cardiol. 2016;99:47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CCM, Beck PL, Muruve DA, Kubes P. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science. 2010;330:362–6.

    Article  CAS  PubMed  Google Scholar 

  12. Martine P, Rébé C. Heat shock proteins and inflammasomes. Int J Mol Sci. 2019;20:4508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fan J, Ren M, Adhikari BK, Wang H, He Y. The NLRP3 inflammasome as a novel therapeutic target for cardiac fibrosis. J Inflamm Res. 2022;15:3847–58.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jorgensen I, Lopez JP, Laufer SA, Miao EA. IL-1β, IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis. Eur J Immunol. 2016;46:2761–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jia C, Chen H, Zhang J, et al. Role of pyroptosis in cardiovascular diseases. Int Immunopharmacol. 2019;67:311–8.

    Article  CAS  PubMed  Google Scholar 

  16. Bageghni SA, Hemmings KE, Zava N, Denton CP, Porter KE, Ainscough JFX, Drinkhill MJ, Turner NA. Cardiac fibroblast-specific p38α MAP kinase promotes cardiac hypertrophy via a putative paracrine interleukin-6 signaling mechanism. Faseb J. 2018;32:4941–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Craig R, Larkin A, Mingo AM, Thuerauf DJ, Andrews C, McDonough PM, Glembotski CC. p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J Biol Chem. 2000;275:23814–24.

    Article  CAS  PubMed  Google Scholar 

  18. Saxena A, Chen W, Su Y, Rai V, Uche OU, Li N, Frangogiannis NG. IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium. J Immunol. 2013;191:4838–48.

    Article  CAS  PubMed  Google Scholar 

  19. Leicht M, Briest W, Zimmer H-G. Regulation of norepinephrine-induced proliferation in cardiac fibroblasts by interleukin-6 and p42/p44 mitogen activated protein kinase. Mol Cell Biochem. 2003;243:65–72.

    Article  CAS  PubMed  Google Scholar 

  20. Bansal SS, Ismahil MA, Goel M, Patel B, Hamid T, Rokosh G, Prabhu SD. Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circulation Hear Fail. 2017;10:e003688.

    CAS  Google Scholar 

  21. Yan X, Anzai A, Katsumata Y, et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol. 2013;62:24–35.

    Article  CAS  PubMed  Google Scholar 

  22. Hilgendorf I, Gerhardt LMS, Tan TC, et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ Res. 2014;114:1611–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction. Circ Res. 2016;119:91–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu X, Khalil H, Kanisicak O, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128:2127–43.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dick SA, Epelman S. Chronic heart failure and inflammation. Circ Res. 2016;119:159–76.

    Article  CAS  PubMed  Google Scholar 

  26. Frantz S, Falcao-Pires I, Balligand J, et al. The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. Eur J Heart Fail. 2018;20:445–59.

    Article  PubMed  Google Scholar 

  27. Medzhitov R. The spectrum of inflammatory responses. Science. 2021;374:1070–5.

    Article  CAS  PubMed  Google Scholar 

  28. Gan W, Ren J, Li T, Lv S, Li C, Liu Z, Yang M. The SGK1 inhibitor EMD638683, prevents angiotensin II–induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1–10.

    Article  CAS  PubMed  Google Scholar 

  29. Peters A, Nawrot TS, Baccarelli AA. Hallmarks of environmental insults. Cell. 2021;184:1455–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramos GC, van den Berg A, Nunes-Silva V, et al. Myocardial aging as a T-cell–mediated phenomenon. Proc National Acad Sci. 2017;114:E2420–9.

    Article  CAS  Google Scholar 

  31. Vidal R, Wagner JUG, Braeuning C, et al. Transcriptional heterogeneity of fibroblasts is a hallmark of the aging heart. JCI Insight. 2019;4:e131092.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pillai ICL, Li S, Romay M, et al. Cardiac fibroblasts adopt osteogenic fates and can be targeted to attenuate pathological heart calcification. Cell Stem Cell. 2017;20:218-232.e5.

    Article  CAS  PubMed  Google Scholar 

  33. Yura Y, Sano S, Walsh K. Clonal hematopoiesis: a new step linking inflammation to heart failure. JACC Basic Transl Sci. 2020;5:196–207.

    Article  PubMed  PubMed Central  Google Scholar 

  34. • Dorsheimer L, Assmus B, Rasper T, et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 2019;4:25–33. This study identified causal genes of clonal hematopoiesis, which were associated with an increase in mortality and hospitalization of elderly patients with heart failure.

    Article  PubMed  Google Scholar 

  35. Wagner JUG, Dimmeler S. Cellular cross-talks in the diseased and aging heart. J Mol Cell Cardiol. 2019;138:136–46.

    Article  PubMed  Google Scholar 

  36. Dillmann WH. Diabetic cardiomyopathy. Circ Res. 2019;124:1160–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.

    Article  CAS  PubMed  Google Scholar 

  38. Iyer SS, He Q, Janczy JR, et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity. 2013;39:311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Bio. 2020;21:363–83.

    Article  CAS  Google Scholar 

  40. Pang Y, Kartsonaki C, Lv J, et al. Associations of adiposity, circulating protein biomarkers, and risk of major vascular diseases. JAMA Cardiol. 2021;6:276–86.

    Article  PubMed  Google Scholar 

  41. Deeks SG, Tracy R, Douek DC. Systemic effects of inflammation on health during chronic HIV infection. Immunity. 2013;39:633–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zanni MV, Awadalla M, Toribio M, et al. Immune correlates of diffuse myocardial fibrosis and diastolic dysfunction among aging women with human immunodeficiency virus. J Infect Dis. 2019;221:1315–20.

    PubMed Central  Google Scholar 

  43. Meyer A, Wang W, Qu J, Croft L, Degen JL, Coller BS, Ahamed J. Platelet TGF-β1 contributions to plasma TGF-β1, cardiac fibrosis, and systolic dysfunction in a mouse model of pressure overload. Blood. 2012;119:1064–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahamed J, Terry H, Choi ME, Laurence J. Transforming growth factor-&bgr;1-mediated cardiac fibrosis. AIDS. 2016;30:535–42.

    Article  PubMed  Google Scholar 

  45. • Daseke MJ, Chalise U, Becirovic-Agic M, Salomon JD, Cook LM, Case AJ, Lindsey ML. Neutrophil signaling during myocardial infarction wound repair. Cell Signal. 2020;77:109816. This review comprehensively describes the roles of neutrophils during myocardial infarction, encompassing both molecular biology and pathophysiology.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Venkatachalam K, Venkatesan B, Valente AJ, Melby PC, Nandish S, Reusch JEB, Clark RA, Chandrasekar B. WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-α (TNF-α)-stimulated cardiac fibroblast proliferation but inhibits TNF-α-induced cardiomyocyte death*. J Biol Chem. 2009;284:14414–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Siwik DA, Chang DL-F, Colucci WS. Interleukin-1β and tumor necrosis factor-α decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res. 2000;86:1259–65.

    Article  CAS  PubMed  Google Scholar 

  48. Mir SA, Chatterjee A, Mitra A, Pathak K, Mahata SK, Sarkar S. Inhibition of signal transducer and activator of transcription 3 (STAT3) attenuates interleukin-6 (IL-6)-induced collagen synthesis and resultant hypertrophy in rat heart. J Biol Chem. 2012;287:2666–77.

    Article  CAS  PubMed  Google Scholar 

  49. Aminjan HH, Abtahi SR, Hazrati E, Chamanara M, Jalili M, Paknejad B. Targeting of oxidative stress and inflammation through ROS/NF-kappaB pathway in phosphine-induced hepatotoxicity mitigation. Life Sci. 2019;232:116607.

    Article  Google Scholar 

  50. Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol. 2001;280:C53–60.

    Article  CAS  PubMed  Google Scholar 

  51. Bratton DL, Henson PM. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol. 2011;32:350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ, Drechsler M, Weber C, Soehnlein O, Steffens S. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J. 2017;38:187–97.

    CAS  PubMed  Google Scholar 

  53. Ma Y, Yabluchanskiy A, Iyer RP, Cannon PL, Flynn ER, Jung M, Henry J, Cates CA, Deleon-Pennell KY, Lindsey ML. Temporal neutrophil polarization following myocardial infarction. Cardiovasc Res. 2016;110:51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nicolás-Ávila JA, Lechuga-Vieco AV, Esteban-Martínez L, et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell. 2020;183:94-109.e23.

    Article  PubMed  Google Scholar 

  55. Epelman S, Lavine KJ, Beaudin AE, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40:91–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, Ornitz DM, Randolph GJ, Mann DL. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc National Acad Sci. 2014;111:16029–34.

    Article  CAS  Google Scholar 

  57. Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124:1382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dick SA, Macklin JA, Nejat S, et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat Immunol. 2019;20:29–39.

    Article  CAS  PubMed  Google Scholar 

  59. Lavine KJ, Pinto AR, Epelman S, Kopecky BJ, Clemente-Casares X, Godwin J, Rosenthal N, Kovacic JC. The macrophage in cardiac homeostasis and disease JACC macrophage in CVD series (part 4). J Am Coll Cardiol. 2018;72:2213–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Frangogiannis NG, Dewald O, Xia Y, Ren G, Haudek S, Leucker T, Kraemer D, Taffet G, Rollins BJ, Entman ML. Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation. 2007;115:584–92.

    Article  CAS  PubMed  Google Scholar 

  61. Zouggari Y, Ait-Oufella H, Bonnin P, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19:1273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bajpai G, Bredemeyer A, Li W, et al. Tissue resident CCR2− and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ Res. 2019;124:263–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang S, Weinberg S, DeBerge M, et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 2019;29:443-456.e5.

    Article  CAS  PubMed  Google Scholar 

  64. Jung M, Ma Y, Iyer RP, DeLeon-Pennell KY, Yabluchanskiy A, Garrett MR, Lindsey ML. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res Cardiol. 2017;112:33.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, Adachi H, Yashiro K, Suzuki K. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest. 2016;126:2151–66.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shirakawa K, Endo J, Kataoka M, et al. MerTK expression and ERK activation are essential for the functional maturation of osteopontin-producing reparative macrophages after myocardial infarction. J Am Heart Assoc. 2020;9:e017071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. •• Kuppe C, Flores ROR, Li Z, et al. Spatial multi-omic map of human myocardial infarction. Nature. 2022;608:766–77. This study identified several transcription factors involved in the myofibroblast activation in the human MI using multi-omics approaches. The spatial transcriptomics analysis has suggested the presence of a special milieu consisting of distinct macrophage subsets and myofibroblasts in the infarction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Patel B, Bansal SS, Ismahil MA, Hamid T, Rokosh G, Mack M, Prabhu SD. CCR2+ monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC Basic Transl Sci. 2018;3:230–44.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kubota A, Frangogiannis NG. Macrophages in myocardial infarction. Am J Physiol Cell Physiol. 2022;323:C1304–24.

    Article  CAS  PubMed  Google Scholar 

  70. van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJA. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathology. 2007;170:818–29.

    Article  Google Scholar 

  71. Bevan L, Lim ZW, Venkatesh B, Riley PR, Martin P, Richardson RJ. Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovasc Res. 2019;116:1357–71.

    Article  PubMed Central  Google Scholar 

  72. Laroumanie F, Douin-Echinard V, Pozzo J, et al. CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation. 2014;129:2111–24.

    Article  CAS  PubMed  Google Scholar 

  73. Ngwenyama N, Kaur K, Bugg D, et al. Antigen presentation by cardiac fibroblasts promotes cardiac dysfunction. Nat Cardiovasc Res. 2022;1:761–74.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang Y, Zhang Y-Y, Li T-T, et al. Ablation of interleukin-17 alleviated cardiac interstitial fibrosis and improved cardiac function via inhibiting long non-coding RNA-AK081284 in diabetic mice. J Mol Cell Cardiol. 2018;115:64–72.

    Article  PubMed  Google Scholar 

  75. Wu L, Ong S, Talor MV, et al. Cardiac fibroblasts mediate IL-17A–driven inflammatory dilated cardiomyopathy. J Exp Med. 2014;211:1449–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Saxena A, Dobaczewski M, Rai V, Haque Z, Chen W, Li N, Frangogiannis NG. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am J Physiol-heart C. 2014;307:H1233–42.

    Article  CAS  Google Scholar 

  77. Xia N, Lu Y, Gu M, et al. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation. 2020;142:1956–73.

    Article  CAS  PubMed  Google Scholar 

  78. Cordero-Reyes AM, Youker KA, Trevino AR, Celis R, Hamilton DJ, Flores-Arredondo JH, Orrego CM, Bhimaraj A, Estep JD, Torre-Amione G. Full expression of cardiomyopathy is partly dependent on B-cells: a pathway that involves cytokine activation, immunoglobulin deposition, and activation of apoptosis. J Am Heart Assoc. 2016;5:e002484.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Adamo L, Rocha-Resende C, Lin C-Y, et al. Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart. JCI Insight. 2020. https://doi.org/10.1172/jci.insight.134700.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lazzerini PE, Capecchi PL, Laghi-Pasini F, Boutjdir M. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. Nat Rev Cardiol. 2017;14:521–35.

    Article  CAS  PubMed  Google Scholar 

  81. Peng H, Sarwar Z, Yang X-P, Peterson EL, Xu J, Janic B, Rhaleb N, Carretero OA, Rhaleb N-E. Profibrotic role for interleukin-4 in cardiac remodeling and dysfunction. Hypertension. 2018;66:582–9.

    Article  Google Scholar 

  82. Kawano H, Do YS, Kawano Y, Starnes V, Barr M, Law RE, Hsueh WA. Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation. 2000;101:1130–7.

    Article  CAS  PubMed  Google Scholar 

  83. Swaney JS, Roth DM, Olson ER, Naugle JE, Meszaros JG, Insel PA. Inhibition of cardiac myofibroblast formation and collagen synthesis by activation and overexpression of adenylyl cyclase. Proc National Acad Sci. 2005;102:437–42.

    Article  CAS  Google Scholar 

  84. Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest. 2017;127:3770–83.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sanchez MC, Lancel S, Boulanger E, Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants. 2018;7:98.

    Article  Google Scholar 

  86. Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J, Feghali-Bostwick C, Mutlu GM, Budinger GRS, Chandel NS. Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling. J Biol Chem. 2013;288:770–7.

    Article  CAS  PubMed  Google Scholar 

  87. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D. NAD(P)H oxidase 4 mediates transforming growth factor-β1–induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res. 2005;97:900–7.

    Article  CAS  PubMed  Google Scholar 

  88. Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol. 2019;16:361–78.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Forte E, Skelly DA, Chen M, Daigle S, Morelli KA, Hon O, Philip VM, Costa MW, Rosenthal NA, Furtado MB. Dynamic interstitial cell response during myocardial infarction predicts resilience to rupture in genetically diverse mice. Cell Rep. 2020;30:3149-3163.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, Michael LH, Rollins BJ, Entman ML, Frangogiannis NG. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res. 2005;96:881–9.

    Article  CAS  PubMed  Google Scholar 

  91. Cheng JW, Sadeghi Z, Levine AD, Penn MS, von Recum HA, Caplan AI, Hijaz A. The role of CXCL12 and CCL7 chemokines in immune regulation, embryonic development, and tissue regeneration. Cytokine. 2014;69:277–83.

    Article  CAS  PubMed  Google Scholar 

  92. Wu CL, Yin R, Wang S-N, Ying R. A review of CXCL1 in cardiac fibrosis. Frontiers Cardiovasc Medicine. 2021;8:674498.

    Article  CAS  Google Scholar 

  93. Pakshir P, Alizadehgiashi M, Wong B, Coelho NM, Chen X, Gong Z, Shenoy VB, McCulloch CA, Hinz B. Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat Commun. 2019;10:1850.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kawaguchi M, Takahashi M, Hata T, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011;123:594–604.

    Article  CAS  PubMed  Google Scholar 

  95. Sandanger Ø, Ranheim T, Vinge LE, et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia–reperfusion injury. Cardiovasc Res. 2013;99:164–74.

    Article  CAS  PubMed  Google Scholar 

  96. Bageghni SA, Hemmings KE, Yuldasheva NY, et al. Fibroblast-specific deletion of interleukin-1 receptor-1 reduces adverse cardiac remodeling following myocardial infarction. JCI Insight. 2019;4:e125074.

    Article  PubMed Central  Google Scholar 

  97. Everett BM, Cornel J, Lainscak M, Anker SD, Abbate A, Thuren T, Libby P, Glynn RJ, Ridker PM. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation. 2019;139:1289–99.

    Article  CAS  PubMed  Google Scholar 

  98. Frangogiannis NG. Transforming growth factor-β in myocardial disease. Nat Rev Cardiol. 2022:1–21.

  99. Schafer S, Viswanathan S, Widjaja AA, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Trepicchio WL, Bozza M, Pedneault G. Dorner AJ (1996) Recombinant human IL-11 attenuates the inflammatory response through down-regulation of proinflammatory cytokine release and nitric oxide production. J Immunol Baltim Md. 1950;157:3627–34.

    Google Scholar 

  101. •• Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, Ho JW, Nordon RE, Harvey RP. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. 2019;8:e43882. This pioneering research presents the utilization of single-cell RNA-sequencing to analyze mouse interstitial heart cells after MI, deciphering the heterogeneity among fibroblasts and macrophages, and provided valuable data for exploring the cellular interactions and processes of differentiation in silico.

    Article  PubMed  PubMed Central  Google Scholar 

  102. McLellan MA, Skelly DA, Dona MSI, et al. High-resolution transcriptomic profiling of the heart during chronic stress reveals cellular drivers of cardiac fibrosis and hypertrophy. Circulation. 2020;142:1448–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Akitoshi Hara reports a Naito Foundation Grant for Studying Overseas and an Overseas Research Fellowship from the Japan Society for the Promotion of Science. Michelle D. Tallquist reports funding from the National Institutes of Health (R01HL144067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitoshi Hara.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, A., Tallquist, M.D. Fibroblast and Immune Cell Cross-Talk in Cardiac Fibrosis. Curr Cardiol Rep 25, 485–493 (2023). https://doi.org/10.1007/s11886-023-01877-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01877-8

Keywords

Navigation