Skip to main content

Advertisement

Log in

Emerging Genotype–Phenotype Associations in Dilated Cardiomyopathy

  • Myocardial Disease (A Abbate and M Merlo, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The disease burden of inherited dilated cardiomyopathy (DCM) is large and likely underestimated. This population stands to benefit immensely from therapeutic approaches tailored to the underlying genetic causes. Here, we review recent advances in understanding novel genotype–phenotype relationships and how these can improve the care of patients with inherited DCM.

Recent Findings

In the last several years, discovery of novel DCM-associated genes, gene-specific DCM outcomes, and nuanced information about variant-environment interactions have advanced our understanding of inherited DCM. Specifically, novel associations of genes with specific clinical phenotypes can help to assess sudden cardiac death risk and guide counseling around behavioral and environmental exposures that may worsen disease.

Summary

Important expansions of the current genotype-phenotype profiling include the newly DCM-associated FLNC variant, prognostically significant LMNA, DSP inflammatory cardiomyopathy, and the highly penetrant features of RBM20 variants as well as the role of TTN variants in compounding the effects of environmental factors on toxin-mediated DCM. Future directions to improve diagnostic accuracy and prognostic improvement in DCM will center not just on identification of new genes, but also on understanding the interaction of known and novel variants in known DCM genes with patient genetic background and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. Committee W, Maddox TM, Januzzi JL Jr, et al. 2021 Update to the 2017 ACC expert consensus decision pathway for optimization of heart failure treatment: answers to 10 pivotal issues about heart failure with reduced ejection fraction: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;77:772–810.

    Article  Google Scholar 

  2. McNally EM, Mestroni L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ Res. 2017;121:731–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Katritsis DG, Katritsis D, Gersh BJ, John Camm A. Clinical cardiology: current practice guidelines. Oxford University Press; 2013.

    Google Scholar 

  4. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113:1807–16.

    Article  PubMed  Google Scholar 

  5. Pinto YM, Elliott PM, Arbustini E, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016;37:1850–8.

    Article  PubMed  Google Scholar 

  6. Bozkurt B, Colvin M, Cook J, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation. 2016;134:e579–646.

    Article  PubMed  Google Scholar 

  7. Schultheiss H-P, Fairweather D, Caforio ALP, et al. Dilated cardiomyopathy. Nat Rev Dis Primers. 2019;5:32.

    Article  PubMed  Google Scholar 

  8. Huggins GS, Kinnamon DD, Haas GJ, et al. Prevalence and cumulative risk of familial idiopathic dilated cardiomyopathy. JAMA. 2022;327:454–63.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Escobar-Lopez L, Ochoa JP, Mirelis JG, et al. Association of genetic variants with outcomes in patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol. 2021;78:1682–99.

    Article  CAS  PubMed  Google Scholar 

  10. Sturm AC, Hershberger RE. Genetic testing in cardiovascular medicine: current landscape and future horizons. Curr Opin Cardiol. 2013;28:317–25.

    Article  PubMed  Google Scholar 

  11. Verdonschot JAJ, Hazebroek MR, Krapels IPC, et al. Implications of genetic testing in dilated cardiomyopathy. Circ Genom Precis Med. 2020;13:476–87.

    Article  CAS  PubMed  Google Scholar 

  12. •• Mazzarotto F, Tayal U, Buchan RJ, et al. Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation. 2020;141:387–398. This large DCM cohort sequencing study of over 2500 probands identified genes and variants most relevant for DCM genetic testing.

  13. Pugh TJ, Kelly MA, Gowrisankar S, et al. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet Med. 2014;16:601–8.

    Article  CAS  PubMed  Google Scholar 

  14. Walsh R, Thomson KL, Ware JS, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2016;19:192–203.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jordan E, Peterson L, Ai T, et al. Evidence-based assessment of genes in dilated cardiomyopathy. Circulation. 2021;144:7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilde AAM, Semsarian C, Márquez MF, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace. 2022. https://doi.org/10.1093/europace/euac030.

    Article  PubMed  Google Scholar 

  17. Verdonschot JAJ, Vanhoutte EK, Claes GRF, et al. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum Mutat. 2020;41:1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brodehl A, Gaertner-Rommel A, Milting H. (Filamin-C): a new(er) player in the field of genetic cardiomyopathies. Circ Cardiovasc Genet. 2017. https://doi.org/10.1161/CIRCGENETICS.117.001959.

    Article  PubMed  Google Scholar 

  19. Brun F, Gigli M, Graw SL, et al. FLNC truncations cause arrhythmogenic right ventricular cardiomyopathy. J Med Genet. 2020. https://doi.org/10.1136/jmedgenet-2019-106394.

    Article  PubMed  Google Scholar 

  20. Begay RL, Graw SL, Sinagra G, et al. Filamin C truncation mutations are associated with arrhythmogenic dilated cardiomyopathy and changes in the cell-cell adhesion structures. JACC Clin Electrophysiol. 2018;4:504–14.

    Article  PubMed  PubMed Central  Google Scholar 

  21. • Gigli M, Stolfo D, Graw SL, et al. Phenotypic expression, natural history, and risk stratification of cardiomyopathy caused by filamin C truncating variants. Circulation. 2021. https://doi.org/10.1161/CIRCULATIONAHA.121.053521. Gigli et al. detected the arrhythmogenic phenotype associated with FLNC truncating variants independent of left ventricular dysfunction, an example of high risk cardiomyopathy with heterogenous clinical presentations.

  22. Agarwal R, Paulo JA, Toepfer CN, et al. Filamin C cardiomyopathy variants cause protein and lysosome accumulation. Circ Res. 2021;129:751–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Towbin JA, McKenna WJ, Abrams DJ, et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm. 2019;16:e301–72.

    Article  PubMed  Google Scholar 

  24. Merlo M, Pivetta A, Pinamonti B, Stolfo D, Zecchin M, Barbati G, Di Lenarda A, Sinagra G. Long-term prognostic impact of therapeutic strategies in patients with idiopathic dilated cardiomyopathy: changing mortality over the last 30 years. Eur J Heart Fail. 2014;16:317–24.

    Article  CAS  PubMed  Google Scholar 

  25. James CA, Calkins H. Arrhythmogenic right ventricular cardiomyopathy: progress toward personalized management. Annu Rev Med. 2019;70:1–18.

    Article  CAS  PubMed  Google Scholar 

  26. Ho CY, Day SM, Axelsson A, et al. Valsartan in early-stage hypertrophic cardiomyopathy: a randomized phase 2 trial. Nat Med. 2021;27:1818–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hazebroek MR, Moors S, Dennert R, et al. Prognostic relevance of gene-environment interactions in patients with dilated cardiomyopathy: applying the MOGE(S) classification. J Am Coll Cardiol. 2015;66:1313–23.

    Article  PubMed  Google Scholar 

  28. Crasto S, My I, Di Pasquale E. The broad spectrum of LMNA cardiac diseases: from molecular mechanisms to clinical phenotype. Front Physiol. 2020. https://doi.org/10.3389/fphys.2020.00761.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Captur G, Arbustini E, Bonne G, et al. Lamin and the heart. Heart. 2018;104:468–79.

    Article  CAS  PubMed  Google Scholar 

  30. Nikolova V, Leimena C, McMahon AC, et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J Clin Invest. 2004;113:357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sinagra G, Dal Ferro M, Merlo M. Lamin A/C cardiomyopathy: cutting edge to personalized medicine. Circ Cardiovasc Genet. 2017. https://doi.org/10.1161/CIRCGENETICS.117.002004.

    Article  PubMed  Google Scholar 

  32. Kumar S, Baldinger SH, Gandjbakhch E, et al. Long-term arrhythmic and nonarrhythmic outcomes of lamin A/C mutation carriers. J Am Coll Cardiol. 2016;68:2299–307.

    Article  CAS  PubMed  Google Scholar 

  33. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2018;15:e190–252.

    Article  PubMed  Google Scholar 

  34. Hasselberg NE, Haland TF, Saberniak J, Brekke PH, Berge KE, Leren TP, Edvardsen T, Haugaa KH. Lamin A/C cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation. Eur Heart J. 2018;39:853–60.

    Article  PubMed  Google Scholar 

  35. Yermakovich D, Sivitskaya L, Vaikhanskaya T, Danilenko N, Motuk I. Novel desmoplakin mutations in familial Carvajal syndrome. Acta Myol. 2018;37:263.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Corrado D, van Tintelen PJ, McKenna WJ, et al. Arrhythmogenic right ventricular cardiomyopathy: evaluation of the current diagnostic criteria and differential diagnosis. Eur Heart J. 2020;41:1414–29.

    Article  PubMed  Google Scholar 

  37. Wang W, Murray B, Tichnell C, Gilotra NA, Zimmerman SL, Gasperetti A, Scheel P, Tandri H, Calkins H, James CA. Clinical characteristics and risk stratification of desmoplakin cardiomyopathy. Europace. 2022;24:268–77.

    Article  CAS  PubMed  Google Scholar 

  38. •Smith ED, Lakdawala NK, Papoutsidakis N, et al. Desmoplakin cardiomyopathy, a fibrotic and inflammatory form of cardiomyopathy distinct from typical dilated or arrhythmogenic right ventricular cardiomyopathy. Circulation. 2020. https://doi.org/10.1161/CIRCULATIONAHA.119.044934. DSP, previously associated with predominantly right ventricular arrhythmogenic cardiomyopathy, is described in association with a unique left ventricular fibrotic and inflammatory cardiomyopathy in this study.

  39. Hey TM, Rasmussen TB, Madsen T, Aagaard MM, Harbo M, Mølgaard H, Møller JE, Eiskjær H, Mogensen J. Pathogenic RBM20-variants are associated with a severe disease expression in male patients with dilated cardiomyopathy. Circ Heart Fail. 2019;12: e005700.

    Article  CAS  PubMed  Google Scholar 

  40. Guo W, Schafer S, Greaser ML, et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med. 2012;18:766–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maatz H, Jens M, Liss M, et al. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. J Clin Invest. 2014;124:3419–30.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brauch KM, Karst ML, Herron KJ, de Andrade M, Pellikka PA, Rodeheffer RJ, Michels VV, Olson TM. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol. 2009;54:930–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li D, Morales A, Gonzalez-Quintana J, Norton N, Siegfried JD, Hofmeyer M, Hershberger RE. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin Transl Sci. 2010;3:90–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Parikh VN, Caleshu C, Reuter C, et al. Regional variation in RBM20 causes a highly penetrant arrhythmogenic cardiomyopathy. Circ Heart Fail. 2019. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005371.

    Article  PubMed  PubMed Central  Google Scholar 

  45. van den Hoogenhof MMG, Beqqali A, Amin AS, et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation. 2018;138:1330–42.

    Article  PubMed  CAS  Google Scholar 

  46. Schneider JW, Oommen S, Qureshi MY, et al. Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nat Med. 2020;26:1788–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fenix AM, Miyaoka Y, Bertero A, et al. Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies. Nat Commun. 2021;12:6324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Akinrinade O, Heliö T, Lekanne Deprez RH, et al. Relevance of titin missense and non-frameshifting insertions/deletions variants in dilated cardiomyopathy. Sci Rep. 2019;9:4093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Deo RC. Alternative splicing, internal promoter, nonsense-mediated decay, or all three: explaining the distribution of truncation variants in titin. Circ Cardiovasc Genet. 2016;9:419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Romano R, Ghahremani S, Zimmerman T, Legere N, Thakar K, Ladha FA, Pettinato AM, Hinson JT. Reading frame repair of truncation variants restores titin quantity and functions. Circulation. 2022;145:194–205.

    Article  CAS  PubMed  Google Scholar 

  51. Akhtar MM, Lorenzini M, Cicerchia M, et al. Clinical phenotypes and prognosis of dilated cardiomyopathy caused by truncating variants in the TTN gene. Circ Heart Fail. 2020. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006832.

    Article  PubMed  Google Scholar 

  52. Haggerty CM, Damrauer SM, Levin MG, et al. Genomics-first evaluation of heart disease associated with titin-truncating variants. Circulation. 2019;140:42–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tayal U, Newsome S, Buchan R, et al. Phenotype and clinical outcomes of titin cardiomyopathy. J Am Coll Cardiol. 2017;70:2264–74.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Patel PN, Ito K, Willcox JAL, et al. Contribution of noncanonical splice variants to truncating variant cardiomyopathy. Circ Genom Precis Med. 2021;14: e003389.

    Article  CAS  PubMed  Google Scholar 

  55. Pirruccello JP, Bick A, Wang M, et al. Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-15823-7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pirruccello JP, Bick A, Chaffin M, et al. Titin truncating variants in adults without known congestive heart failure. J Am Coll Cardiol. 2020;75:1239–41.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ware JS, Amor-Salamanca A, Tayal U, et al. Genetic etiology for alcohol-induced cardiac toxicity. J Am Coll Cardiol. 2018. https://doi.org/10.1016/j.jacc.2018.03.462.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, et al. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation. 2019;140:31–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McNamara DM, Elkayam U, Alharethi R, et al. Clinical outcomes for peripartum cardiomyopathy in North America: results of the IPAC study (investigations of pregnancy-associated cardiomyopathy). J Am Coll Cardiol. 2015;66:905–14.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gad MM, Elgendy IY, Mahmoud AN, Saad AM, Isogai T, Sande Mathias I, Misbah Rameez R, Chahine J, Jneid H, Kapadia SR. Disparities in cardiovascular disease outcomes among pregnant and post-partum women. J Am Heart Assoc. 2021;10: e017832.

    Article  PubMed  Google Scholar 

  61. Ware JS, Li J, Mazaika E, et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N Engl J Med. 2016;374:233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goli R, Li J, Brandimarto J, et al. Genetic and phenotypic landscape of peripartum cardiomyopathy. Circulation. 2021. https://doi.org/10.1161/CIRCULATIONAHA.120.052395.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Orphanou N, Papatheodorou E, Anastasakis A. Dilated cardiomyopathy in the era of precision medicine: latest concepts and developments. Heart Fail Rev. 2021. https://doi.org/10.1007/s10741-021-10139-0.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria N. Parikh.

Ethics declarations

Conflict of Interest

VNP is on the SAB of and receives research support from BioMarin, Inc., and has minor consulting relationships with Viz.ai, and Constantiam Biosciences. VNP also reports support from NHLBI K08HL14318503, as well as payment for UCSD genomic medicine grand rounds. The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Myocardial Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Njoroge, J.N., Mangena, J.C., Aribeana, C. et al. Emerging Genotype–Phenotype Associations in Dilated Cardiomyopathy. Curr Cardiol Rep 24, 1077–1084 (2022). https://doi.org/10.1007/s11886-022-01727-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-022-01727-z

Keywords

Navigation