Skip to main content
Log in

Genetic Landscape of Dilated Cardiomyopathy

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Dilated cardiomyopathy (DCM) is one of the most common and clinically heterogeneous forms of cardiomyopathy characterized by a high risk of unfavorable course and outcome. A complex etiology has been shown for DCM. Genetic factors contribute to both familial and sporadic cases. The review summarizes information on the role of genetic factors in the clinical variability of DCM. Much of the data accumulated to date indicates a high genetic heterogeneity of DCM. There are numerous rare pathogenic variants in more than 100 genes that lead to the disease. The type, number, and localization of these genetic variants can affect the clinical course of DCM. Furthermore, common genetic variants are localized in various loci, including genomic regulatory regions and genes of “monogenic forms” of DCM, acting as factors modifying the pathological phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Richardson, P., McKenna, W., Bristow, M., et al., Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies, Circulation, 1996, vol. 93, no. 5, pp. 841—842. https://doi.org/10.1161/01.cir.93.5.841

    Article  CAS  PubMed  Google Scholar 

  2. Pinto, Y.M., Elliott, P.M., Arbustini, E., et al., Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases, Eur. Heart J., 2016, vol. 37, no. 23, pp. 1850—1858. https://doi.org/10.1093/eurheartj/ehv727

    Article  PubMed  Google Scholar 

  3. Verdonschot, J.A.J., Hazebroek, M.R., Krapels, I.P.C., et al., Implications of genetic testing in dilated cardiomyopathy, Circ. Genom. Precis. Med., 2020, vol. 13, no. 5, pp. 476—487. https://doi.org/10.1161/circgen.120.003031

    Article  CAS  PubMed  Google Scholar 

  4. McKenna, W.J. and Judge, D.P., Epidemiology of the inherited cardiomyopathies, Nat. Rev. Cardiol., 2021, vol. 18, no. 1, pp. 22—36. https://doi.org/10.1038/s41569-020-0428-2

    Article  PubMed  Google Scholar 

  5. Lannou, S., Mansencal, N., Couchoud, C., et al., The public health burden of cardiomyopathies: insights from a nationwide inpatient study, J. Clin. Med., 2020, vol. 9. no. 4, p. 920. https://doi.org/10.3390/jcm9040920

    Article  PubMed Central  Google Scholar 

  6. McKenna, W.J., Maron, B.J., and Thiene, G., Classification, epidemiology, and global burden of cardiomyopathies, Circ. Res., 2017, vol. 121, no. 7, pp. 722—730. https://doi.org/10.1161/circresaha.117.309711

    Article  CAS  PubMed  Google Scholar 

  7. Chernyavskiy, A.M., Doronin, D.V., Fomichev, A.V., et al., 10-year heart transplantation experience in Novosibirsk, Vestn. Transplantologii Iskusstv. Organov, 2018, vol. 20, no. 1, pp. 23—31.

    Google Scholar 

  8. Cannatà, A., Fabris, E., Merlo, M., et al., Sex differences in the long-term prognosis of dilated cardiomyopathy, Can. J. Cardiol., 2020, vol. 36, no. 1, pp. 37—44. https://doi.org/10.1016/j.cjca.2019.05.031

    Article  PubMed  Google Scholar 

  9. Werner, N., Nickenig, G., and Sinning, J.M., Complex PCI procedures: challenges for the interventional cardiologist, Clin. Res. Cardiol., 2018, vol. 107, suppl. 2, pp. 64—73. https://doi.org/10.1007/s00392-018-1316-1

    Article  PubMed  Google Scholar 

  10. Leontyeva, I.V., Problems of modern diagnostics and treatment of dilated cardiomyopathy in children, Ross. Vestn. Perinatol. Pediatr., 2018, vol. 63, no. 2, pp. 7—15. https://doi.org/10.21508/1027-4065-2018-63-2-7-15

    Article  Google Scholar 

  11. Bondue, A., Arbustini, E., Bianco, A., et al., Complex roads from genotype to phenotype in dilated cardiomyopathy: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology, Cardiovasc. Res., 2018, vol. 114, no.10, pp. 1287—1303. https://doi.org/10.1093/cvr/cvy122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vaykhanskaya, T.G., Sivitskaya, L.N., Kurushko, T.V., et al., Dilated cardiomyopathy: reconceptualization of the problem, Ross. Kardiol. Zh., 2019, vol. 24, no. 4, pp. 35—47. https://doi.org/10.15829/1560-4071-2019-4-35-47

    Article  Google Scholar 

  13. De Bellis, A., De Angelis, G., Fabris, E., et al., Gender-related differences in heart failure: beyond the “one-size-fits-all” paradigm, Heart Failure Rev., 2020, vol. 25, no. 2, pp. 245—255. https://doi.org/10.1007/s10741-019-09824-y

    Article  Google Scholar 

  14. Rosenbaum, A.N., Agre, K.E., and Pereira, N.L., Genetics of dilated cardiomyopathy: practical implications for heart failure management, Nat. Rev. Cardiol., 2020, vol. 17, no. 5, pp. 286—297. https://doi.org/10.1038/s41569-019-0284-0

    Article  PubMed  Google Scholar 

  15. Jordan, E. and Hershberger, R.E., Considering complexity in the genetic evaluation of dilated cardiomyopathy, Heart, 2021, vol. 107, no. 2, pp. 106—112. https://doi.org/10.1136/heartjnl-2020-316658

    Article  CAS  PubMed  Google Scholar 

  16. Jordan, E., Peterson, L., Ai, T., et al., Evidence-based assessment of genes in dilated cardiomyopathy, Circulation, 2021, vol. 144, no. 1, pp. 7—19. https://doi.org/10.1161/circulationaha.120.053033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sivasankaran, S., Sharland, G.K., and Simpson, J.M., Dilated cardiomyopathy presenting during fetal life, Cardiol. Young, 2005, vol. 15, no. 4, pp. 409—416. https://doi.org/10.1017/S1047951105000855

    Article  PubMed  Google Scholar 

  18. Kuo, K., Speranza, R., and Hackmon, R., Fetal dilated cardiomyopathy associated with variants of uncertain significance in MYH7 and DSG2 genes: a case report and review of the literature, J. Obstet. Gynaecol. Can., 2020, vol. 42, no. 9, pp. 1147—1150. https://doi.org/10.1016/j.jogc.2019.11.002

    Article  PubMed  Google Scholar 

  19. Cohen, J.A. and Almodovar, M.C., Dilated cardiomyopathy in children: moving beyond traditional pharmacologic therapy, Curr. Opin. Cardiol., 2020, vol. 35, no. 1, pp. 52—57. https://doi.org/10.1097/HCO.0000000000000692

    Article  PubMed  Google Scholar 

  20. Weng, K.P., Lin, C.C., Huang, S.H., and Hsieh, K.S., Idiopathic dilated cardiomyopathy in children: a single medical center’s experience, J. Chin. Med. Assoc., 2005, vol. 68, no. 8, pp. 368—372. https://doi.org/10.1016/S1726-4901(09)70177-7

    Article  PubMed  Google Scholar 

  21. Halliday, B.P., Gulati, A., Ali, A., et al., Sex- and age-based differences in the natural history and outcome of dilated cardiomyopathy, Eur. J. Heart Failure, 2018, vol. 20, no. 10, pp. 1392—1400. https://doi.org/10.1002/ejhf.1216

    Article  Google Scholar 

  22. Jammal Addin, M.B., Young, D., McCarrison, S., and Hunter, L., Dilated cardiomyopathy in a national paediatric population, Eur. J. Pediatr., 2019, vol. 178, no. 8, pp. 1229—1235. https://doi.org/10.1007/s00431-019-03404-w

    Article  PubMed  Google Scholar 

  23. Huertas-Quiñones, V.M., Mestra, C.F., Peña-Trujillo, V., et al., Paediatric cardiomyopathies: echocardiographic diagnosis, clinical profile, and demographic characteristics: the experience of a tertiary referral centre for Latin American paediatric cardiology, Cardiol. Young, 2020, vol. 30, no. 4, pp. 462—467. https://doi.org/10.1017/S1047951120000281

    Article  PubMed  Google Scholar 

  24. Franaszczyk, M., Chmielewski, P., Truszkowska, G., et al., Titin truncating variants in dilated cardiomyopathy—prevalence and genotype—phenotype correlations, PLoS One, 2017, vol. 12, no. 1. e0169007. https://doi.org/10.1371/journal.pone.0169007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Soares, P., Rocha, G., Pissarra, S., et al., Neonatal dilated cardiomyopathy, Rev. Port. Cardiol., 2017, vol. 36, no. 3, pp. 201—214. https://doi.org/10.1016/j.repc.2016.10.007

    Article  PubMed  Google Scholar 

  26. Mikhailov, V.S., Bukaeva, A.A., Rumyantseva, V.A., et al., Molecular genetic analysis of the TTN gene in children with dilated cardiomyopathy, Klin. Eksp. Khir. Zh. im. Akad. B.V. Petrovskogo, 2018, vol. 6, no. 19, pp. 70—76.

    Google Scholar 

  27. Zaklyazminskaya, E.V., Bukaeva, A.A., Shestak, A.G., et al., Dilated cardiomyopathy: genetic causes and the strategy of DNA diagnostics, Klin. Eksp. Khir. Zh. im. Akad. B.V. Petrovskogo, 2019, vol. 7, no. 3, pp. 44—53. https://doi.org/10.24411/2308-1198-2019-13005

    Article  Google Scholar 

  28. Hey, T.M., Rasmussen, T.B., Madsen, T., et al., Clinical and genetic investigations of 109 index patients with dilated cardiomyopathy and 445 of their relatives, Circ.: Heart Failure, 2020, vol. 13, no. 10. e006701. https://doi.org/10.1161/circheartfailure.119.006701

    Article  CAS  PubMed  Google Scholar 

  29. Haas, J., Frese, K.S., Peil, B., et al., Atlas of the clinical genetics of human dilated cardiomyopathy, Eur. Heart J., 2015, vol. 36, no. 18, pp. 1123—1135. https://doi.org/10.1093/eurheartj/ehu301

    Article  CAS  PubMed  Google Scholar 

  30. Parrott, A., Khoury, P.R., Shikany, A.R., et al., Investigation of de novo variation in pediatric cardiomyopathy, Am. J. Med. Genet., Part C., 2020, vol. 184, no. 1, pp. 116—123. https://doi.org/10.1002/ajmg.c.31764

    Article  CAS  Google Scholar 

  31. Asselbergs, F.W., Sammani, A., Elliott, P., et al., Differences between familial and sporadic dilated cardiomyopathy: ESC EORP cardiomyopathy and myocarditis registry, ESC Heart Failure, 2021, vol. 8, no. 1, pp. 95—105. https://doi.org/10.1002/ehf2.13100

    Article  PubMed  Google Scholar 

  32. Verdonschot, J.A.J., Merken, J.J., Brunner-La Rocca, H.P., et al., Value of speckle tracking-based deformation analysis in screening relatives of patients with asymptomatic dilated cardiomyopathy, JACC Cardiovasc. Imaging, 2020, vol. 13, no. 2, part. 2, pp. 549—558. https://doi.org/10.1016/j.jcmg.2019.02.032

  33. Paldino, A., De Angelis, G., Dal Ferro, M., et al., High prevalence of subtle systolic and diastolic dysfunction in genotype-positive phenotype-negative relatives of dilated cardiomyopathy patients, Int. J. Cardiol., 2021, vol. 324, pp. 108—114. https://doi.org/10.1016/j.ijcard.2020.09.036

    Article  PubMed  Google Scholar 

  34. Marume, K., Noguchi, T., Tateishi, E., et al., Prognosis and clinical characteristics of dilated cardiomyopathy with family history via pedigree analysis, Circ. J., 2020, vol. 84, no. 8, pp. 1284—1293. https://doi.org/10.1253/circj.CJ-19-1176

    Article  CAS  PubMed  Google Scholar 

  35. Fang, H.J. and Liu, B.P., Prevalence of TTN mutations in patients with dilated cardiomyopathy: a meta-analysis, Herz, 2020, vol. 45, suppl. 1, pp. 29—36. https://doi.org/10.1007/s00059-019-4825-4

    Article  PubMed  Google Scholar 

  36. Sivitskaya, L.N., Vaikhanskaya, T.G., Danilenko, N.G., et al., Mutations in the LMNA gene leading to conformational changes in lamins A/C and the development of dilated cardiomyopathy, Mol. Prikl. Genet., 2017, vol. 23, pp. 67—74.

    Google Scholar 

  37. Vaikhanskaya, T.G., Sivitskaya, L.N., Levdanskii, O.D., et al., Dilated cardiomyopathy: genetic predictors in risk stratification for sudden death, Kardiol. Belarusi, 2019, vol. 11, no. 4, pp. 590—602.

    Google Scholar 

  38. Kurushko, T.V., Vaikhanskaya, T.G., Bulgak, A.G., et al., LMNA-associated dilated cardiomyopathy: variability of clinical manifestations, Kardiol. Belarusi, 2018, vol. 10, no. 6, pp. 892—903.

    Google Scholar 

  39. Online Mendelian Inheritance in Man. https://omim.org/. Accessed January, 2021.

  40. Povysil, G., Chazara, O., Carss, K.J., et al., Assessing the role of rare genetic variation in patients with heart failure, JAMA Cardiol., 2021, vol. 6, no. 4. e206500. https://doi.org/10.1001/jamacardio.2020.6500

    Article  Google Scholar 

  41. Schultheiss, H.P., Fairweather, D., Caforio, A.L.P., et al., Dilated cardiomyopathy, Nat. Rev. Dis. Primers, 2019, vol. 5, no. 1, p. 32. https://doi.org/10.1038/s41572-019-0084-1

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hunter, L., Ferguson, R., and McDevitt, H., Vitamin D deficiency cardiomyopathy in Scotland: a retrospective review of the last decade, Arch. Dis. Child., 2020, vol. 105, no. 9, pp. 853—856. https://doi.org/10.1136/archdischild-2019-317794

    Article  PubMed  Google Scholar 

  43. Marstrand, P., Picard, K., and Lakdawala, N.K., Second hits in dilated cardiomyopathy, Curr. Cardiol. Rep., 2020, vol. 22, no. 2, p. 8. https://doi.org/10.1007/s11886-020-1260-3

    Article  PubMed  Google Scholar 

  44. Kurbanov, R.D., Abdullaev, T.A., Mirzarakhimova, S.T., and Mardanov, B.U., Peripartum cardiomyopathy: some features of clinical picture and course of the disease, Kardiologiya, 2012, vol. 52, no. 6, pp. 35—39.

    CAS  PubMed  Google Scholar 

  45. Robertson, J., Lindgren, M., Schaufelberger, M., et al., Body mass index in young women and risk of cardiomyopathy: a long-term follow-up study in Sweden, Circulation, 2020, vol. 141, no. 7, pp. 520—529. https://doi.org/10.1161/circulationaha.119.044056

    Article  PubMed  PubMed Central  Google Scholar 

  46. Peters, S., Johnson, R., Birch, S., et al., Familial dilated cardiomyopathy, Heart Lung Circ., 2020, vol. 29, no. 4, pp. 566—574. https://doi.org/10.1016/j.hlc.2019.11.018

    Article  PubMed  Google Scholar 

  47. The portal for rare diseases and orphan drugs. https://www.orpha.net/consor/cgi-bin/index.php. Accessed January, 2021.

  48. MalaCards: the human disease database. https://www.malacards.org/. Accessed April, 2021.

  49. ClinVar. https://www.ncbi.nlm.nih.gov/clinvar/. Accessed April, 2021.

  50. Clinical Genome Resource: ClinGen. https://clinicalgenome.org/. Accessed April, 2021.

  51. UniProt. https://www.uniprot.org/. Accessed April, 2021.

  52. Protein Atlas. https://www.proteinatlas.org/. Accessed January, 2021.

  53. Villard, E., Perret, C., Gary, F., et al., A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy, Eur. Heart J., 2011, vol. 32, no. 9, pp. 1065—1076. https://doi.org/10.1093/eurheartj/ehr105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meder, B., Ruhle, F., Weis, T., et al., A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy, Eur. Heart J., 2014, vol. 35, no. 16, pp. 1069—1077. https://doi.org/10.1093/eurheartj/eht251

    Article  CAS  PubMed  Google Scholar 

  55. Esslinger, U., Garnier, S., Korniat, A., et al., Exome-wide association study reveals novel susceptibility genes to sporadic dilated cardiomyopathy, PLoS One, 2017, vol. 12, no. 3. e0172995. https://doi.org/10.1371/journal.pone.0172995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vasan, R.S., Glazer, N.L., Felix, J.F., et al., Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data, JAMA, 2009, vol. 302, no. 2, pp. 168—178. https://doi.org/10.1001/jama.2009.978-a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wild, P.S., Felix, J.F., Schillert, A., et al., Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function, J. Clin. Invest., 2017, vol. 127, no. 5, pp. 1798—1812. https://doi.org/10.1172/JCI84840

    Article  PubMed  PubMed Central  Google Scholar 

  58. Aung, N., Vargas, J.D., Yang, C., et al., Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development, Circulation, 2019, vol. 140, no. 16, pp. 1318—1330. https://doi.org/10.1161/circulationaha.119.041161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pirruccello, J.P., Bick, A., Wang, M., et al., Analysis of cardiac magnetic resonance imaging in 36 000 individuals yields genetic insights into dilated cardiomyopathy, Nat. Commun., 2020, vol. 11, no. 1, p. 2254. https://doi.org/10.1038/s41467-020-15823-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alila-Fersi, O., Tabebi, M., Maalej, M., et al., First description of a novel mitochondrial mutation in the MT-TI gene associated with multiple mitochondrial DNA deletion and depletion in family with severe dilated mitochondrial cardiomyopathy, Biochem. Biophys. Res. Commun., 2018, vol. 497, no. 4, pp. 1049—1054. https://doi.org/10.1016/j.bbrc.2018.02.173

    Article  CAS  PubMed  Google Scholar 

  61. Govindaraj, P., Rani, B., Sundaravadivel, P., et al., Mitochondrial genome variations in idiopathic dilated cardiomyopathy, Mitochondrion, 2019, vol. 48, pp. 51—59. https://doi.org/10.1016/j.mito.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  62. Peña-Peña, M.L., Ochoa, J.P., Barriales-Villa, R., et al., Prognostic implications of pathogenic truncating variants in the TTN gene, Int. J. Cardiol., 2020, vol. 316, pp. 180—183. https://doi.org/10.1016/j.ijcard.2020.04.086

    Article  PubMed  Google Scholar 

  63. Zhang, X.L., Xie, J., Lan, R.F., et al., Genetic basis and genotype—phenotype correlations in Han Chinese patients with idiopathic dilated cardiomyopathy, Sci. Rep., 2020, vol. 10, no. 1, p. 2226. https://doi.org/10.1038/s41598-020-58984-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lesurf, R., Said, A., Akinrinade, O., et al., Whole genome sequencing delineates regulatory and novel genic variants in childhood cardiomyopathy, medRxiv, 2020. https://www.medrxiv.org/. https://doi.org/10.1101/2020.10.12.20211474.

  65. Mazzarotto, F., Tayal, U., Buchan, R.J., et al., Reevaluating the genetic contribution of monogenic dilated cardiomyopathy, Circulation, 2020, vol. 141, no. 5, pp. 387—398. https://doi.org/10.1161/circulationaha.119.037661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Herkert, J.C., Abbott, K.M., Birnie, E., et al., Toward an effective exome-based genetic testing strategy in pediatric dilated cardiomyopathy, Genet. Med., 2018, vol. 20, no. 11, pp. 1374—1386. https://doi.org/10.1038/gim.2018.9

    Article  CAS  PubMed  Google Scholar 

  67. Patterson, J., Coats, C., and McGowan, R., Familial dilated cardiomyopathy associated with pathogenic TBX5 variants: expanding the cardiac phenotype associated with Holt—Oram syndrome, Am. J. Med. Genet., Part A, 2020, vol. 182, no. 7, pp. 1725—1734. https://doi.org/10.1002/ajmg.a.61635

    Article  CAS  Google Scholar 

  68. Rethanavelu, K., Fung, J.L.F., Chau, J.F.T., et al., Phenotypic and mutational spectrum of 21 Chinese patients with Alström syndrome, Am. J. Med. Genet., Part A, 2020, vol. 182, no. 2, pp. 279—288. https://doi.org/10.1002/ajmg.a.61412

    Article  CAS  Google Scholar 

  69. Hawley, M.H., Almontashiri, N., and Biesecker, L., An assessment of the role of vinculin loss of function variants in inherited cardiomyopathy, Hum. Mutat., 2020, vol. 41, no. 9, pp. 1577—1587. https://doi.org/10.1002/humu.24061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rajapreyar, I., Sinkey, R., Pamboukian, S.V., and Tita, A., Did a shared thioredoxin-reductase gene mutation lead to maternal peripartum cardiomyopathy and fatal dilated cardiomyopathy in her son? A case report, Case Rep. Womens Health, 2020, vol. 26. e00196. https://doi.org/10.1016/j.crwh.2020.e00196

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sun, Q., Guo, J., Hao, C., et al., Whole-exome sequencing reveals two de novo variants in the RBM20 gene in two Chinese patients with left ventricular non-compaction cardiomyopathy, Pediatr. Invest., 2020, vol. 4, no. 1, pp. 11—16. https://doi.org/10.1002/ped4.12183

    Article  CAS  Google Scholar 

  72. Bukaeva, A.A., Zaklyazminskaya, E.V., Dombrovskaya, A.V., et al., Contribution of mutations in the TNNT2 gene to the spectrum of genetic causes of DCM in Russian patients, Med. Genet., 2020, vol. 19, no. 5(214), pp. 14—15. https://doi.org/10.25557/2073-7998.2020.05.14-15

  73. Xiao, F., Wei, Q., Wu, B., et al., Clinical exome sequencing revealed that FLNC variants contribute to the early diagnosis of cardiomyopathies in infant patients, Transl. Pediatr., 2020, vol. 9, no. 1, pp. 21—33. https://doi.org/10.21037/tp.2019.12.02

    Article  PubMed  PubMed Central  Google Scholar 

  74. Anderson, J.L., Christensen, G.B., Escobar, H., et al., Discovery of TITIN gene truncating variant mutations and 5-year outcomes in patients with nonischemic dilated cardiomyopathy, Am. J. Cardiol., 2020, vol. 137, pp. 97—102. https://doi.org/10.1016/j.amjcard.2020.09.026

    Article  CAS  PubMed  Google Scholar 

  75. Dorsch, L.M., Kuster, D.W.D., Jongbloed, J.D.H., et al., The effect of tropomyosin variants on cardiomyocyte function and structure that underlie different clinical cardiomyopathy phenotypes, Int. J. Cardiol., 2021, vol. 323, pp. 251—258. https://doi.org/10.1016/j.ijcard.2020.08.101

    Article  PubMed  Google Scholar 

  76. Qin, X., Li, P., Qu, H.Q., et al., FLNC and MYLK2 gene mutations in a Chinese family with different phenotypes of cardiomyopathy, Int. Heart J., 2021, vol. 62, no. 1, pp. 127—134. https://doi.org/10.1536/ihj.20-351

    Article  CAS  PubMed  Google Scholar 

  77. Ganapathi, M., Argyriou, L., Martínez-Azorín, F., et al., Bi-allelic missense disease-causing variants in RPL3L associate neonatal dilated cardiomyopathy with muscle-specific ribosome biogenesis, Hum. Genet., 2020, vol. 139, no. 11, pp. 1443—1454. https://doi.org/10.1007/s00439-020-02188-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vaikhanskaya, T.G., Sivitskaya, L.N., Danilenko, N.G., et al., Dilation of the chambers of the heart caused by mutation in the lamin gene (LMNA), Kardiologiya, 2016, vol. 56, no. 5, pp. 85—96. https://doi.org/10.18565/cardio.2016.5.85-96

    Article  CAS  PubMed  Google Scholar 

  79. Landim-Vieira, M., Johnston, J.R., Ji, W., et al., Familial dilated cardiomyopathy associated with a novel combination of compound heterozygous TNNC1 variants, Front. Physiol., 2020, vol. 10, p. 1612. https://doi.org/10.3389/fphys.2019.01612

    Article  PubMed  PubMed Central  Google Scholar 

  80. Augusto, J.B., Eiros, R., Nakou, E., et al., Dilated cardiomyopathy and arrhythmogenic left ventricular cardiomyopathy: a comprehensive genotype-imaging phenotype study, Eur. Heart. J. Cardiovasc. Imaging, 2020, vol. 21, no. 3, pp. 326—336. https://doi.org/10.1093/ehjci/jez188

    Article  PubMed  Google Scholar 

  81. Verdonschot, J.A.J., Robinson, E.L., James, K.N., et al., Mutations in PDLIM5 are rare in dilated cardiomyopathy but are emerging as potential disease modifiers, Mol. Genet. Genomic Med., 2020, vol. 8, no. 2. e1049. https://doi.org/10.1002/mgg3.1049

    Article  CAS  PubMed  Google Scholar 

  82. Abdallah, A.M., Carlus, S.J., Al-Mazroea, A.H., et al., Digenic inheritance of LAMA4 and MYH7 mutations in patient with infantile dilated cardiomyopathy, Medicina (Kaunas), 2019, vol. 55, no. 1, p. 17. https://doi.org/10.3390/medicina55010017

    Article  PubMed Central  Google Scholar 

  83. Cowan, J.R., Salyer, L., Wright, N.T., et al., SOS1 gain-of-function variants in dilated cardiomyopathy, Circ. Genom. Precis. Med., 2020, vol. 13, no. 4. e002892. https://doi.org/10.1161/circgen.119.002892

    Article  PubMed  PubMed Central  Google Scholar 

  84. van den Hoogenhof, M.M.G., Beqqali, A., Amin, A.S., et al., RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling, Circulation, 2018, vol. 138, no. 13, pp. 1330—1342. https://doi.org/10.1161/circulationaha.117.031947

    Article  CAS  PubMed  Google Scholar 

  85. Levitas, A., Muhammad, E., Zhang, Y., et al., A novel recessive mutation in SPEG causes early onset dilated cardiomyopathy, PLoS Genet., 2020, vol. 16, no. 9. e1009000. https://doi.org/10.1371/journal.pgen.1009000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Robinson, H.K., Zaklyazminskaya, E., Povolotskaya, I., et al., Biallelic variants in PPP1R13L cause paediatric dilated cardiomyopathy, Clin. Genet., 2020, vol. 98, no. 4, pp. 331—340. https://doi.org/10.1111/cge.13812

    Article  CAS  PubMed  Google Scholar 

  87. Almomani, R., Herkert, J.C., Posafalvi, A., et al., Homozygous damaging SOD2 variant causes lethal neonatal dilated cardiomyopathy, J. Med. Genet., 2020, vol. 57, no. 1, pp. 23—30. https://doi.org/10.1136/jmedgenet-2019-106330

    Article  CAS  PubMed  Google Scholar 

  88. Blagova, O., Alieva, I., Kogan, E., et al., Mixed hypertrophic and dilated phenotype of cardiomyopathy in a patient with homozygous in-frame deletion in the MyBPC3 gene treated as myocarditis for a long time, Front. Pharmacol., 2020, vol. 11, p. 579450. https://doi.org/10.3389/fphar.2020.579450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Di, R.M., Yang, C.X., Zhao, C.M., et al., Identification and functional characterization of KLF5 as a novel disease gene responsible for familial dilated cardiomyopathy, Eur. J. Med. Genet., 2020, vol. 63, no. 4, p. 103827. https://doi.org/10.1016/j.ejmg.2019.103827

    Article  PubMed  Google Scholar 

  90. Purevjav, E., Arimura, T., Augustin, S., et al., Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations, Hum. Mol. Genet., 2012, vol. 21, no. 9, pp. 2039—2053. https://doi.org/10.1093/hmg/dds022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mazzarotto, F., Hawley, M.H., Beltrami, M., et al., Systematic large-scale assessment of the genetic architecture of left ventricular noncompaction reveals diverse etiologies, Genet. Med., 2021, vol. 23, no. 5, pp. 856—864. https://doi.org/10.1038/s41436-020-01049-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vissing, C.R., Rasmussen, T.B., Dybro, A.M., et al., Dilated cardiomyopathy caused by truncating titin variants: long-term outcomes, arrhythmias, response to treatment and sex differences, J. Med. Genet., 2021, vol. 58, no. 12, pp. 832—841. https://doi.org/10.1136/jmedgenet-2020-107178

    Article  PubMed  Google Scholar 

  93. Tadros, R., Francis, C., Xu, X., et al., Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect, Nat. Genet., 2021, vol. 53, no. 2, pp. 128—134. https://doi.org/10.1038/s41588-020-00762-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. DisGeNET—a database of gene-disease associations. https://www.disgenet.org/. Accessed January, 2020.

  95. Haywood, M.E., Cocciolo, A., Porter, K.F., et al., Transcriptome signature of ventricular arrhythmia in dilated cardiomyopathy reveals increased fibrosis and activated TP53, J. Mol. Cell Cardiol., 2020, vol. 139, pp. 124—134. https://doi.org/10.1016/j.yjmcc.2019.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, M., Parker, B.L., Pearson, E., et al., Core functional nodes and sex-specific pathways in human ischaemic and dilated cardiomyopathy, Nat. Commun., 2020, vol. 11, no. 1, p. 2843. https://doi.org/10.1038/s41467-020-16584-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu, J., Zeng, C., and Wang, Y., Epigenetics in dilated cardiomyopathy, Curr. Opin. Cardiol., 2019, vol. 34, no. 3, pp. 260—269. https://doi.org/10.1097/HCO.0000000000000616

    Article  PubMed  PubMed Central  Google Scholar 

  98. Calderon-Dominguez, M., Belmonte, T., Quezada-Feijoo, M., et al., Emerging role of microRNAs in dilated cardiomyopathy: evidence regarding etiology, Transl. Res., 2020, vol. 215, pp. 86—101. https://doi.org/10.1016/j.trsl.2019.08.007

    Article  CAS  PubMed  Google Scholar 

  99. Mansueto, G., Benincasa, G., Della Mura, N., et al., Epigenetic-sensitive liquid biomarkers and personalised therapy in advanced heart failure: a focus on cell-free DNA and microRNAs, J. Clin. Pathol., 2020, vol. 73, no. 9, pp. 535—543. https://doi.org/10.1136/jclinpath-2019-206404

    Article  CAS  PubMed  Google Scholar 

  100. Haas, J., Frese, K.S., Park, Y.J., et al., Alterations in cardiac DNA methylation in human dilated cardiomyopathy, EMBO Mol. Med., 2013, vol. 5, no. 3, pp. 413—429. https://doi.org/10.1002/emmm.201201553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Koczor, C.A., Torres, R.A., Fields, E.J., et al., Thymidine kinase and mtDNA depletion in human cardiomyopathy: epigenetic and translational evidence for energy starvation, Physiol. Genomics, 2013, vol. 45, no. 14, pp. 590—596. https://doi.org/10.1152/physiolgenomics.00014.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Glezeva, N., Moran, B., Collier, P., et al., Targeted DNA methylation profiling of human cardiac tissue reveals novel epigenetic traits and gene deregulation across different heart failure patient subtypes, Circ.: Heart Failure, 2019, vol. 12, no. 3. e005765. https://doi.org/10.1161/circheartfailure.118.005765

    Article  CAS  PubMed  Google Scholar 

  103. Belmonte, T., Mangas, A., Calderon-Dominguez, M., et al., Peripheral microRNA panels to guide the diagnosis of familial cardiomyopathy, Transl. Res., 2020, vol. 218, pp. 1—15. https://doi.org/10.1016/j.trsl.2020.01.003

    Article  CAS  PubMed  Google Scholar 

  104. Aleshcheva, G., Pietsch, H., Escher, F., and Schultheiss, H.P., MicroRNA profiling as a novel diagnostic tool for identification of patients with inflammatory and/or virally induced cardiomyopathies, ESC Heart Failure, 2021, vol. 8, no. 1, pp. 408—422. https://doi.org/10.1002/ehf2.13090

    Article  PubMed  Google Scholar 

  105. LaRocca, T.J., Seeger, T., Prado, M., et al., Pharmacological silencing of microRNA-152 prevents pressure overload-induced heart failure, Circ.: Heart Failure, 2020, vol. 13, no. 3. e006298. https://doi.org/10.1161/circheartfailure.119.006298

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out within the framework of the state assignment of the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Nazarenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Kashevarova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucher, A.N., Sleptcov, A.A. & Nazarenko, M.S. Genetic Landscape of Dilated Cardiomyopathy. Russ J Genet 58, 369–383 (2022). https://doi.org/10.1134/S1022795422030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422030085

Keywords:

Navigation