Skip to main content
Log in

Associations of Glycemic Index and Glycemic Load with Cardiovascular Disease: Updated Evidence from Meta-analysis and Cohort Studies

  • Ischemic Heart Disease (D Mukherjee, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diet and lifestyle patterns are considered major contributory factors for cardiovascular disease (CVD) and mortality. In particular, consuming a diet higher in carbohydrates (not inclusive of fruits and vegetables, but more processed carbohydrates) has been associated with metabolic abnormalities that subsequently may increase the risk of CVD and related mortality. Glycemic index (GI) and glycemic load (GL) are values given to foods based on how fast the body converts carbohydrates into glucose also referred to as the glycemic burden of carbohydrates from foods. Conflicting associations of how high GI and GL influence CVDs have been observed even in high-quality meta-analysis studies. We synthesize and report the associations of high GI and GL with various CVDs by sex, obesity, and geographical locations using an updated review of meta-analysis and observational studies.

Recent Findings

We identified high GI or high GL is associated with an increased risk of CVD events including diabetes (DM), metabolic syndrome (MS), coronary heart disease (CHD), stroke, and stroke mortality in the general population, and the risk of CVD outcomes appears to be stratified by sex, obesity status, and preexisting CVD. Both high GI and GL are associated with DM and CHD in the general population. However, high GI is strongly associated with DM/MS, while high GL is strongly associated with an increased risk of CHD in females. In addition, high GL is also associated with incident stroke, and appears to be associated with CVD mortality in subjects with preexisting CVD or high BMI and all-cause mortality in non-obese DM subjects. However, high GI appears to be associated with CVD or all-cause mortality only in females without CVD.

Summary

High GI/GL is an important risk factor for CVD outcomes in the general population. High GI seems to be markedly associated with DM/MS, and it may enhance the risk of CVD or all-cause mortality in both sexes and predominately females. Although both high GI and high GL are risk factors for CHD in females, high GL is associated with CVD outcomes in at-risk populations for CVD. These data suggest that while high GI increases the propensity of CVD risk factors and mortality in healthy individuals, high GL contributes to the risk of severe heart diseases including CVD or all-cause mortality, particularly in at-risk populations. These data indicate dietary interventions designed for focusing carbohydrate quality by lowering both GI and GL are recommended for preventing CVD outcomes across all populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Azimova K, San Juan Z, Mukherjee D. Cardiovascular safety profile of currently available diabetic drugs. Ochsner J. 2014;14(4):616–32.

    PubMed  PubMed Central  Google Scholar 

  2. Mukherjee D, Eagle KA. Improving quality of cardiovascular care in the real world: how can we remove the barriers? Am J Manag Care. 2004;10(7 Pt 2):471–2.

    PubMed  Google Scholar 

  3. Dwivedi AK, Dubey P, Cistola DP, Reddy SY. Association between obesity and cardiovascular outcomes: updated evidence from meta-analysis studies. Curr Cardiol Rep. 2020;22(4):25. https://doi.org/10.1007/s11886-020-1273-y.

    Article  PubMed  Google Scholar 

  4. Liu B, Du Y, Wu Y, Snetselaar LG, Wallace RB, Bao W. Trends in obesity and adiposity measures by race or ethnicity among adults in the United States 2011–18: population based study. BMJ. 2021;372: n365. https://doi.org/10.1136/bmj.n365.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee SE, Han K, Kang YM, Kim SO, Cho YK, Ko KS, et al. Trends in the prevalence of metabolic syndrome and its components in South Korea: findings from the Korean National Health Insurance Service Database (2009–2013). PLoS ONE. 2018;13(3): e0194490. https://doi.org/10.1371/journal.pone.0194490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mirrahimi A, de Souza RJ, Chiavaroli L, Sievenpiper JL, Beyene J, Hanley AJ, et al. Associations of glycemic index and load with coronary heart disease events: a systematic review and meta-analysis of prospective cohorts. J Am Heart Assoc. 2012;1(5): e000752. https://doi.org/10.1161/JAHA.112.000752.

    Article  PubMed  PubMed Central  Google Scholar 

  7. •• Fan J, Song Y, Wang Y, Hui R, Zhang W. Dietary glycemic index, glycemic load, and risk of coronary heart disease, stroke, and stroke mortality: a systematic review with meta-analysis. PLoS ONE. 2012;7(12): e52182. https://doi.org/10.1371/journal.pone.0052182. (This is one of the first meta-analysis studies reporting the effects of quantitive and categorized GI and GL on CVD outcomes by gender and obesity status.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anand SS, Hawkes C, de Souza RJ, Mente A, Dehghan M, Nugent R, et al. Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system: a report from the workshop convened by the World Heart Federation. J Am Coll Cardiol. 2015;66(14):1590–614. https://doi.org/10.1016/j.jacc.2015.07.050.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC. Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med. 2000;343(1):16–22. https://doi.org/10.1056/NEJM200007063430103.

    Article  CAS  PubMed  Google Scholar 

  10. Sievenpiper JL. Low-carbohydrate diets and cardiometabolic health: the importance of carbohydrate quality over quantity. Nutr Rev. 2020;78(Suppl 1):69–77. https://doi.org/10.1093/nutrit/nuz082.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Riccardi G, Costabile G. Carbohydrate quality is key for a healthy and sustainable diet. Nat Rev Endocrinol. 2019;15(5):257–8. https://doi.org/10.1038/s41574-019-0190-x.

    Article  CAS  PubMed  Google Scholar 

  12. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr. 1981;34(3):362–6. https://doi.org/10.1093/ajcn/34.3.362.

    Article  CAS  PubMed  Google Scholar 

  13. Salmeron J, Ascherio A, Rimm EB, Colditz GA, Spiegelman D, Jenkins DJ, et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care. 1997;20(4):545–50. https://doi.org/10.2337/diacare.20.4.545.

    Article  CAS  PubMed  Google Scholar 

  14. • Jenkins DJA, Dehghan M, Mente A, Bangdiwala SI, Rangarajan S, Srichaikul K, et al. Glycemic index, glycemic load, and cardiovascular disease and mortality. N Engl J Med. 2021;384(14):1312–22. https://doi.org/10.1056/NEJMoa2007123. (This is an important cohort study that included a large sample size, representing a geographically diverse population with a median follow up of 9.5 years and reported the effects of GI and GL by CVD and obesity status.)

    Article  CAS  PubMed  Google Scholar 

  15. Shahdadian F, Saneei P, Milajerdi A, Esmaillzadeh A. Dietary glycemic index, glycemic load, and risk of mortality from all causes and cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. Am J Clin Nutr. 2019;110(4):921–37. https://doi.org/10.1093/ajcn/nqz061.

    Article  PubMed  Google Scholar 

  16. Ma XY, Liu JP, Song ZY. Glycemic load, glycemic index and risk of cardiovascular diseases: meta-analyses of prospective studies. Atherosclerosis. 2012;223(2):491–6. https://doi.org/10.1016/j.atherosclerosis.2012.05.028.

    Article  CAS  PubMed  Google Scholar 

  17. Jayedi A, Soltani S, Jenkins D, Sievenpiper J, Shab-Bidar S. Dietary glycemic index, glycemic load, and chronic disease: an umbrella review of meta-analyses of prospective cohort studies. Crit Rev Food Sci Nutr. 2020:1–10. https://doi.org/10.1080/10408398.2020.1854168.

  18. Barclay AW, Petocz P, McMillan-Price J, Flood VM, Prvan T, Mitchell P, et al. Glycemic index, glycemic load, and chronic disease risk—a meta-analysis of observational studies. Am J Clin Nutr. 2008;87(3):627–37. https://doi.org/10.1093/ajcn/87.3.627.

    Article  CAS  PubMed  Google Scholar 

  19. •• Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393(10170):434–45. https://doi.org/10.1016/S0140-6736(18)31809-9. (This is the first meta-analysis study to distinguish the predictive potential of critical markers (dietary fiber, whole grains, GI and GL) of carbohydrate quality on CVD outcomes.)

    Article  CAS  PubMed  Google Scholar 

  20. Sieri S, Brighenti F, Agnoli C, Grioni S, Masala G, Bendinelli B, et al. Dietary glycemic load and glycemic index and risk of cerebrovascular disease in the EPICOR cohort. PLoS ONE. 2013;8(5): e62625. https://doi.org/10.1371/journal.pone.0062625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levitan EB, Mittleman MA, Wolk A. Dietary glycemic index, dietary glycemic load and mortality among men with established cardiovascular disease. Eur J Clin Nutr. 2009;63(4):552–7. https://doi.org/10.1038/sj.ejcn.1602970.

    Article  CAS  PubMed  Google Scholar 

  22. Burger KN, Beulens JW, van der Schouw YT, Sluijs I, Spijkerman AM, Sluik D, et al. Dietary fiber, carbohydrate quality and quantity, and mortality risk of individuals with diabetes mellitus. PLoS ONE. 2012;7(8): e43127. https://doi.org/10.1371/journal.pone.0043127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Livesey G, Taylor R, Livesey HF, Buyken AE, Jenkins DJA, Augustin LSA et al. Dietary glycemic index and load and the risk of type 2 diabetes: a systematic review and updated meta-analyses of prospective cohort studies. Nutrients. 2019;11(6). https://doi.org/10.3390/nu11061280.

  24. Livesey G, Livesey H. Coronary heart disease and dietary carbohydrate, glycemic index, and glycemic load: dose-response meta-analyses of prospective cohort studies. Mayo Clin Proc Innov Qual Outcomes. 2019;3(1):52–69. https://doi.org/10.1016/j.mayocpiqo.2018.12.007.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Livesey G, Taylor R, Livesey HF, Buyken AE, Jenkins DJA, Augustin LSA et al. Dietary glycemic index and load and the risk of type 2 diabetes: assessment of causal relations. Nutrients. 2019;11(6). https://doi.org/10.3390/nu11061436.

  26. Dong JY, Zhang L, Zhang YH, Qin LQ. Dietary glycaemic index and glycaemic load in relation to the risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Br J Nutr. 2011;106(11):1649–54. https://doi.org/10.1017/S000711451100540X.

    Article  CAS  PubMed  Google Scholar 

  27. Greenwood DC, Threapleton DE, Evans CE, Cleghorn CL, Nykjaer C, Woodhead C, et al. Glycemic index, glycemic load, carbohydrates, and type 2 diabetes: systematic review and dose-response meta-analysis of prospective studies. Diabetes Care. 2013;36(12):4166–71. https://doi.org/10.2337/dc13-0325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Livesey G, Taylor R, Livesey H, Liu S. Is there a dose-response relation of dietary glycemic load to risk of type 2 diabetes? Meta-analysis of prospective cohort studies. Am J Clin Nutr. 2013;97(3):584–96. https://doi.org/10.3945/ajcn.112.041467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bhupathiraju SN, Tobias DK, Malik VS, Pan A, Hruby A, Manson JE, et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am J Clin Nutr. 2014;100(1):218–32. https://doi.org/10.3945/ajcn.113.079533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. •• Hardy DS, Garvin JT, Xu H. Carbohydrate quality, glycemic index, glycemic load and cardiometabolic risks in the US, Europe and Asia: a dose-response meta-analysis. Nutr Metab Cardiovasc Dis. 2020;30(6):853–71. https://doi.org/10.1016/j.numecd.2019.12.050. (This is the most comprehensive meta-analysis study reporting the associations of GI and GL with CVD outcomes in the overall population and according to sex and obesity status separately for geographic locations.)

    Article  CAS  PubMed  Google Scholar 

  31. Zhang JY, Jiang YT, Liu YS, Chang Q, Zhao YH, Wu QJ. The association between glycemic index, glycemic load, and metabolic syndrome: a systematic review and dose-response meta-analysis of observational studies. Eur J Nutr. 2020;59(2):451–63. https://doi.org/10.1007/s00394-019-02124-z.

    Article  PubMed  Google Scholar 

  32. Askari M, Dehghani A, Abshirini M, Raeisi T, Alizadeh S. Glycemic index, but not glycemic load, is associated with an increased risk of metabolic syndrome: meta-analysis of observational studies. Int J Clin Pract. 2021:e14295. https://doi.org/10.1111/ijcp.14295.

  33. Ludwig DS. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA. 2002;287(18):2414–23. https://doi.org/10.1001/jama.287.18.2414.

    Article  CAS  PubMed  Google Scholar 

  34. Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009;169(7):659–69. https://doi.org/10.1001/archinternmed.2009.38.

    Article  CAS  PubMed  Google Scholar 

  35. Choi Y, Chang Y, Ryu S, Cho J, Kim MK, Ahn Y, et al. Relation of dietary glycemic index and glycemic load to coronary artery calcium in asymptomatic korean adults. Am J Cardiol. 2015;116(4):520–6. https://doi.org/10.1016/j.amjcard.2015.05.005.

    Article  CAS  PubMed  Google Scholar 

  36. Turati F, Dilis V, Rossi M, Lagiou P, Benetou V, Katsoulis M, et al. Glycemic load and coronary heart disease in a Mediterranean population: the EPIC Greek cohort study. Nutr Metab Cardiovasc Dis. 2015;25(3):336–42. https://doi.org/10.1016/j.numecd.2014.12.002.

    Article  CAS  PubMed  Google Scholar 

  37. Yuzbashian E, Asghari G, Aghayan M, Hedayati M, Zarkesh M, Mirmiran P, et al. Dietary glycemic index and dietary glycemic load is associated with apelin gene expression in visceral and subcutaneous adipose tissues of adults. Nutr Metab (Lond). 2019;16:68. https://doi.org/10.1186/s12986-019-0389-9.

    Article  CAS  Google Scholar 

  38. Cai X, Wang C, Wang S, Cao G, Jin C, Yu J, et al. Carbohydrate intake, glycemic index, glycemic load, and stroke: a meta-analysis of prospective cohort studies. Asia Pac J Public Health. 2015;27(5):486–96. https://doi.org/10.1177/1010539514566742.

    Article  PubMed  Google Scholar 

  39. Rossi M, Turati F, Lagiou P, Trichopoulos D, La Vecchia C, Trichopoulou A. Relation of dietary glycemic load with ischemic and hemorrhagic stroke: a cohort study in Greece and a meta-analysis. Eur J Nutr. 2015;54(2):215–22. https://doi.org/10.1007/s00394-014-0702-3.

    Article  CAS  PubMed  Google Scholar 

  40. Levitan EB, Mittleman MA, Hakansson N, Wolk A. Dietary glycemic index, dietary glycemic load, and cardiovascular disease in middle-aged and older Swedish men. Am J Clin Nutr. 2007;85(6):1521–6. https://doi.org/10.1093/ajcn/85.6.1521.

    Article  CAS  PubMed  Google Scholar 

  41. Levitan EB, Mittleman MA, Wolk A. Dietary glycaemic index, dietary glycaemic load and incidence of myocardial infarction in women. Br J Nutr. 2010;103(7):1049–55. https://doi.org/10.1017/S0007114509992674.

    Article  CAS  PubMed  Google Scholar 

  42. Levitan EB, Mittleman MA, Wolk A. Dietary glycemic index, dietary glycemic load, and incidence of heart failure events: a prospective study of middle-aged and elderly women. J Am Coll Nutr. 2010;29(1):65–71. https://doi.org/10.1080/07315724.2010.10719818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brand-Miller JC, Petocz P, Colagiuri S. Meta-analysis of low-glycemic index diets in the management of diabetes: response to Franz. Diabetes Care. 2003;26(12):3363–4; author reply 4–5. https://doi.org/10.2337/diacare.26.12.3363.

  44. Thomas D, Elliott EJ. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Database Syst Rev. 2009(1):CD006296. https://doi.org/10.1002/14651858.CD006296.pub2.

  45. Wang Q, Xia W, Zhao Z, Zhang H. Effects comparison between low glycemic index diets and high glycemic index diets on HbA1c and fructosamine for patients with diabetes: A systematic review and meta-analysis. Prim Care Diabetes. 2015;9(5):362–9. https://doi.org/10.1016/j.pcd.2014.10.008.

    Article  PubMed  Google Scholar 

  46. • Zafar MI, Mills KE, Zheng J, Regmi A, Hu SQ, Gou L, et al. Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis. Am J Clin Nutr. 2019;110(4):891–902. https://doi.org/10.1093/ajcn/nqz149. (This comprehensive meta-analysis investigated the effects of variety of dietary interventions lowering GI on cardiometabolic risk factors and reported effect sizes according to diet type, obesity, diabetes, and other subpopulation status.)

    Article  PubMed  Google Scholar 

  47. Ojo O, Ojo OO, Adebowale F, Wang XH. The effect of dietary glycaemic index on glycaemia in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2018;10(3). https://doi.org/10.3390/nu10030373.

  48. •• Chiavaroli L, Lee D, Ahmed A, Cheung A, Khan TA, Blanco S, et al. Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: systematic review and meta-analysis of randomised controlled trials. BMJ. 2021;374: n1651. https://doi.org/10.1136/bmj.n1651.ThisisthemostrecentstudyevaluatingtheeffectoflowGI/GLoncomprehensivecardiometabolicfactorsinrandomizedcontrolledtrials. (This study generates evidence for small but favorable benefits of low GI/GL dietary interventions on cardiometabolic risk factors.)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zafar MI, Mills KE, Zheng J, Peng MM, Ye X, Chen LL. Low glycaemic index diets as an intervention for obesity: a systematic review and meta-analysis. Obes Rev. 2019;20(2):290–315. https://doi.org/10.1111/obr.12791.

    Article  CAS  PubMed  Google Scholar 

  50. Clar C, Al-Khudairy L, Loveman E, Kelly SA, Hartley L, Flowers N et al. Low glycaemic index diets for the prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017;7:CD004467. https://doi.org/10.1002/14651858.CD004467.pub3.

  51. Livesey G, Taylor R, Hulshof T, Howlett J. Glycemic response and health—a systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes. Am J Clin Nutr. 2008;87(1):258S-S268. https://doi.org/10.1093/ajcn/87.1.258S.

    Article  CAS  PubMed  Google Scholar 

  52. Fleming P, Godwin M. Low-glycaemic index diets in the management of blood lipids: a systematic review and meta-analysis. Fam Pract. 2013;30(5):485–91. https://doi.org/10.1093/fampra/cmt029.

    Article  PubMed  Google Scholar 

  53. Goff LM, Cowland DE, Hooper L, Frost GS. Low glycaemic index diets and blood lipids: a systematic review and meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis. 2013;23(1):1–10. https://doi.org/10.1016/j.numecd.2012.06.002.

    Article  CAS  PubMed  Google Scholar 

  54. Toh DWK, Koh ES, Kim JE. Lowering breakfast glycemic index and glycemic load attenuates postprandial glycemic response: a systematically searched meta-analysis of randomized controlled trials. Nutrition. 2020;71: 110634. https://doi.org/10.1016/j.nut.2019.110634.

    Article  CAS  PubMed  Google Scholar 

  55. Schwingshackl L, Hoffmann G. Long-term effects of low glycemic index/load vs. high glycemic index/load diets on parameters of obesity and obesity-associated risks: a systematic review and meta-analysis. Nutr Metab Cardiovasc Dis. 2013;23(8):699–706.https://doi.org/10.1016/j.numecd.2013.04.008.

  56. Thomas DE, Elliott EJ, Baur L. Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database Syst Rev. 2007(3):CD005105. https://doi.org/10.1002/14651858.CD005105.pub2.

  57. Schwingshackl L, Hobl LP, Hoffmann G. Effects of low glycaemic index/low glycaemic load vs. high glycaemic index/high glycaemic load diets on overweight/obesity and associated risk factors in children and adolescents: a systematic review and meta-analysis. Nutr J. 2015;14:87. https://doi.org/10.1186/s12937-015-0077-1.

  58. Wei J, Heng W, Gao J. Effects of low glycemic index diets on gestational diabetes mellitus: a meta-analysis of randomized controlled clinical trials. Medicine (Baltimore). 2016;95(22): e3792. https://doi.org/10.1097/MD.0000000000003792.

    Article  CAS  Google Scholar 

  59. Wan CS, Nankervis A, Teede H, Aroni R. Dietary intervention strategies for ethnic Chinese women with gestational diabetes mellitus: a systematic review and meta-analysis. Nutr Diet. 2019;76(2):211–32. https://doi.org/10.1111/1747-0080.12524.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xu J, Ye S. Influence of low-glycemic index diet for gestational diabetes: a meta-analysis of randomized controlled trials. J Matern Fetal Neonatal Med. 2020;33(4):687–92. https://doi.org/10.1080/14767058.2018.1497595.

    Article  PubMed  Google Scholar 

  61. Evans CE, Greenwood DC, Threapleton DE, Gale CP, Cleghorn CL, Burley VJ. Glycemic index, glycemic load, and blood pressure: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2017;105(5):1176–90. https://doi.org/10.3945/ajcn.116.143685.

    Article  CAS  PubMed  Google Scholar 

  62. Yu D, Zhang X, Shu XO, Cai H, Li H, Ding D, et al. Dietary glycemic index, glycemic load, and refined carbohydrates are associated with risk of stroke: a prospective cohort study in urban Chinese women. Am J Clin Nutr. 2016;104(5):1345–51. https://doi.org/10.3945/ajcn.115.129379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Barclay AW, Brand-Miller JC, Wolever TM. Glycemic index, glycemic load, and glycemic response are not the same. Diabetes Care. 2005;28(7):1839–40. https://doi.org/10.2337/diacare.28.7.1839.

    Article  PubMed  Google Scholar 

  64. He F, Chen C, Li F, Qi Y, Lin X, Liang P, et al. An optimal glycemic load range is better for reducing obesity and diabetes risk among middle-aged and elderly adults. Nutr Metab (Lond). 2021;18(1):31. https://doi.org/10.1186/s12986-020-00504-5.

    Article  CAS  Google Scholar 

  65. Knopp RH, Paramsothy P, Retzlaff BM, Fish B, Walden C, Dowdy A, et al. Sex differences in lipoprotein metabolism and dietary response: basis in hormonal differences and implications for cardiovascular disease. Curr Cardiol Rep. 2006;8(6):452–9. https://doi.org/10.1007/s11886-006-0104-0.

    Article  PubMed  Google Scholar 

  66. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol. 1998;81(4A):7B-12B. https://doi.org/10.1016/s0002-9149(98)00031-9.

    Article  CAS  PubMed  Google Scholar 

  67. Tavani A, Bosetti C, Negri E, Augustin LS, Jenkins DJ, La Vecchia C. Carbohydrates, dietary glycaemic load and glycaemic index, and risk of acute myocardial infarction. Heart. 2003;89(7):722–6. https://doi.org/10.1136/heart.89.7.722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dubey P, Reddy SY, Alvarado L, Manuel SL, Dwivedi AK. Prevalence of at-risk hyperandrogenism by age and race/ethnicity among females in the United States using NHANES III. Eur J Obstet Gynecol Reprod Biol. 2021;260:189–97. https://doi.org/10.1016/j.ejogrb.2021.03.033.

    Article  PubMed  Google Scholar 

  69. Dubey P, Thakur V, Chattopadhyay M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients. 2020;12(6). https://doi.org/10.3390/nu12061864.

  70. Pallavi Dubey SR, Sarah Boyd, Christina Bracamontes, Sheralyn Sanchez, Munmun Chattopadhyay, Alok Dwivedi. Effect of nutritional supplementation on oxidative stress and hormonal and lipid profiles in PCOS-affected females. Nutrients. 2021;13:2938. https://doi.org/10.3390/nu13092938.

  71. Kazemi M, Hadi A, Pierson RA, Lujan ME, Zello GA, Chilibeck PD. Effects of dietary glycemic index and glycemic load on cardiometabolic and reproductive profiles in women with polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2021;12(1):161–78. https://doi.org/10.1093/advances/nmaa092.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Dwivedi.

Ethics declarations

Conflict of Interest

Alok Kumar Dwivedi, Pallavi Dubey, Sireesha Y. Reddy, and Deborah J. Clegg declare that they do not have any conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Ischemic Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, A.K., Dubey, P., Reddy, S.Y. et al. Associations of Glycemic Index and Glycemic Load with Cardiovascular Disease: Updated Evidence from Meta-analysis and Cohort Studies. Curr Cardiol Rep 24, 141–161 (2022). https://doi.org/10.1007/s11886-022-01635-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-022-01635-2

Keywords

Navigation