Skip to main content

Advertisement

Log in

Ischemia and outcome prediction by cardiac CT based machine learning

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Cardiac CT using non-enhanced coronary artery calcium scoring (CACS) and coronary CT angiography (cCTA) has been proven to provide excellent evaluation of coronary artery disease (CAD) combining anatomical and morphological assessment of CAD for cardiovascular risk stratification and therapeutic decision-making, in addition to providing prognostic value for the occurrence of adverse cardiac outcome. In recent years, artificial intelligence (AI) and, in particular, the application of machine learning (ML) algorithms, have been promoted in cardiovascular CT imaging for improved decision pathways, risk stratification, and outcome prediction in a more objective, reproducible, and rational manner. AI is based on computer science and mathematics that are based on big data, high performance computational infrastructure, and applied algorithms. The application of ML in daily routine clinical practice may hold potential to improve imaging workflow and to promote better outcome prediction and more effective decision-making in patient management. Moreover, CT represents a field wherein ML may be particularly useful, such as CACS and cCTA. Thus, the purpose of this review is to give a short overview about the contemporary state of ML based algorithms in cardiac CT, as well as to provide clinicians with currently available scientific data on clinical validation and implementation of these algorithms for the prediction of ischemia-specific CAD and cardiovascular outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

AUC:

Area under the curve

CACS:

Coronary artery calcium scoring

CAD:

Coronary artery disease

cCTA:

Coronary CT angiography

CFD:

Computational fluid dynamics

CT-FFR:

CT-derived fractional flow reserve

CTP:

CT myocardial perfusion

ICA:

Invasive coronary angiography

MACE:

Major adverse cardiac events

ML:

Machine learning

References

  1. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C et al (2020) 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41:407–477

    PubMed  Google Scholar 

  2. Chow BJ, Small G, Yam Y, Chen L, Achenbach S, Al-Mallah M et al (2011) Incremental prognostic value of cardiac computed tomography in coronary artery disease using CONFIRM: COroNary computed tomography angiography evaluation for clinical outcomes: an InteRnational Multicenter registry. Circ Cardiovasc Imaging 4:463–472

    PubMed  Google Scholar 

  3. Cho I, Al’Aref SJ, Berger A, Hartaigh OB, Gransar H, Valenti V et al (2018) Prognostic value of coronary computed tomographic angiography findings in asymptomatic individuals: a 6-year follow-up from the prospective multicentre international CONFIRM study. Eur Heart J. 39:934–941

    PubMed  PubMed Central  Google Scholar 

  4. Investigators S-H, Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR et al (2018) Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med 379:924–933

    Google Scholar 

  5. Patel MR, Norgaard BL, Fairbairn TA, Nieman K, Akasaka T, Berman DS et al (2019) 1-Year impact on medical practice and clinical outcomes of FFRCT: the ADVANCE Registry. JACC Cardiovasc Imaging. 13:97–105

    PubMed  Google Scholar 

  6. Tesche C, De Cecco CN, Albrecht MH, Duguay TM, Bayer RR 2nd, Litwin SE et al (2017) Coronary CT angiography-derived fractional flow reserve. Radiology 285:17–33

    PubMed  Google Scholar 

  7. Pontone G, Baggiano A, Andreini D, Guaricci AI, Guglielmo M, Muscogiuri G et al (2019) Dynamic stress computed tomography perfusion with a whole-heart coverage scanner in addition to coronary computed tomography angiography and fractional flow reserve computed tomography derived. JACC Cardiovasc Imaging. 12:2460–2471

    PubMed  Google Scholar 

  8. van Assen M, De Cecco CN, Eid M, von Knebel Doeberitz P, Scarabello M, Lavra F et al (2019) Prognostic value of CT myocardial perfusion imaging and CT-derived fractional flow reserve for major adverse cardiac events in patients with coronary artery disease. J Cardiovasc Comput Tomogr. 13:26–33

    PubMed  Google Scholar 

  9. Kolossvary M, De Cecco CN, Feuchtner G, Maurovich-Horvat P (2019) Advanced atherosclerosis imaging by CT: radiomics, machine learning and deep learning. J Cardiovasc Comput Tomogr. 13:274–280

    PubMed  Google Scholar 

  10. van Assen M, Banerjee I, De Cecco CN (2020) Beyond the artificial intelligence hype: what lies behind the algorithms and what we can achieve. J Thorac Imaging 35:S3–S10

    PubMed  Google Scholar 

  11. Monti CB, Codari M, van Assen M, De Cecco CN, Vliegenthart R (2020) Machine learning and deep neural networks applications in computed tomography for coronary artery disease and myocardial perfusion. J Thorac Imaging 35:S58–S65

    PubMed  Google Scholar 

  12. Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP et al (2019) Artificial iintelligence in cardiovascular Imaging: JACC state-of-the-art review. J Am Coll Cardiol 73:1317–1335

    PubMed  PubMed Central  Google Scholar 

  13. Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A et al (2019) Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J 40:1975–1986

    PubMed  Google Scholar 

  14. Breiman L (2001) Random forests. Mach Learn. 45:5–32

    Google Scholar 

  15. Hubel DH (1959) Single unit activity in striate cortex of unrestrained cats. J Physiol 147:226–238

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh G, Al’Aref SJ, Van Assen M, Kim TS, van Rosendael A, Kolli KK et al (2018) Machine learning in cardiac CT: basic concepts and contemporary data. J Cardiovasc Comput Tomogr. 12:192–201

    PubMed  Google Scholar 

  17. McClelland RL, Chung H, Detrano R, Post W, Kronmal RA (2006) Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 113:30–37

    PubMed  Google Scholar 

  18. Rozanski A, Gransar H, Shaw LJ, Kim J, Miranda-Peats L, Wong ND et al (2011) Impact of coronary artery calcium scanning on coronary risk factors and downstream testing the EISNER (Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) prospective randomized trial. J Am Coll Cardiol 57:1622–1632

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fischer AM, Eid M, De Cecco CN, Gulsun MA, van Assen M, Nance JW et al (2020) Accuracy of an artificial intelligence deep learning algorithm implementing a recurrent neural network with long short-term memory for the automated detection of calcified plaques from coronary computed tomography angiography. J Thorac Imaging 35:S49–S57

    PubMed  Google Scholar 

  20. Wolterink JM, Leiner T, Takx RAP, Viergever MA, Išgum I (2015) Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection. IEEE Trans Med Imaging 34:1867–1878

    PubMed  Google Scholar 

  21. Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Isgum I (2016) Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 34:123–136

    PubMed  Google Scholar 

  22. Martin SS, van Assen M, Rapaka S, Hudson HT Jr, Fischer AM, Varga-Szemes A et al (2020) Evaluation of a deep learning-based automated CT coronary artery calcium scoring algorithm. JACC Cardiovasc Imaging. 13:524–526

    PubMed  Google Scholar 

  23. van Velzen SGM, Lessmann N, Velthuis BK, Bank IEM, van den Bongard D, Leiner T et al (2020) Deep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT Protocols. Radiology 295:66–79

    PubMed  Google Scholar 

  24. Yang G, Chen Y, Ning X, Sun Q, Shu H, Coatrieux JL (2016) Automatic coronary calcium scoring using noncontrast and contrast CT images. Med Phys 43:2174

    CAS  PubMed  Google Scholar 

  25. Shahzad R, van Walsum T, Schaap M, Rossi A, Klein S, Weustink AC et al (2013) Vessel specific coronary artery calcium scoring: an automatic system. Acad Radiol. 20:1–9

    PubMed  Google Scholar 

  26. Hecht HS, Cronin P, Blaha MJ, Budoff MJ, Kazerooni EA, Narula J et al (2017) 2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: a report of the Society of Cardiovascular Computed Tomography and Society of Thoracic Radiology. J Thorac Imaging 32:W54–W66

    PubMed  Google Scholar 

  27. Cano-Espinosa C, Gonzalez G, Washko GR, Cazorla M, Estepar RSJ (2018) Automated Agatston score computation in non-ECG gated CT scans using deep learning. Proc SPIE Int Soc Opt Eng 10574:105742K

    PubMed  PubMed Central  Google Scholar 

  28. Chang HJ, Lin FY, Gebow D, An HY, Andreini D, Bathina R et al (2019) Selective referral using CCTA versus direct referral for individuals referred to invasive coronary angiography for suspected CAD: a randomized, controlled, open-label Trial. JACC Cardiovasc Imaging. 12:1303–1312

    PubMed  Google Scholar 

  29. Maroules CD, Rajiah P, Bhasin M, Abbara S (2019) Current evidence in cardiothoracic imaging: growing evidence for coronary computed tomography angiography as a first-line test in stable chest pain. J Thorac Imaging 34:4–11

    PubMed  Google Scholar 

  30. Hoffmann H, Frieler K, Hamm B, Dewey M (2008) Intra- and interobserver variability in detection and assessment of calcified and noncalcified coronary artery plaques using 64-slice computed tomography: variability in coronary plaque measurement using MSCT. Int J Cardiovasc Imaging 24:735–742

    PubMed  Google Scholar 

  31. Hell MM, Achenbach S, Shah PK, Berman DS, Dey D (2015) Noncalcified plaque in cardiac CT: quantification and clinical implications. Curr Cardiovasc Imaging Rep. 8:27

    Google Scholar 

  32. Kolossvary M, Kellermayer M, Merkely B, Maurovich-Horvat P (2018) Cardiac computed tomography radiomics: a comprehensive review on radiomic techniques. J Thorac Imaging 33:26–34

    PubMed  Google Scholar 

  33. Tejero-de-Pablos A, Huang K, Yamane H, Kurose Y, Mukuta Y, Iho J et al (2019) Texture-based classification of significant stenosis in CCTA multi-view images of coronary arteries. In: Shen D, Liu T, Peters TM, Staib LH, Essert C, Zhou S et al (eds) Medical image computing and computer assisted intervention—MICCAI 2019. Springer, Cham, pp 732–740

    Google Scholar 

  34. Kang D, Dey D, Slomka PJ, Arsanjani R, Nakazato R, Ko H et al (2015) Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography. J Med Imaging 2:014003

    Google Scholar 

  35. Dey D, Gaur S, Ovrehus KA, Slomka PJ, Betancur J, Goeller M et al (2018) Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. Eur Radiol 28:2655–2664

    PubMed  PubMed Central  Google Scholar 

  36. Zreik M, van Hamersvelt RW, Wolterink JM, Leiner T, Viergever MA, Isgum I (2019) A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans Med Imaging 38:1588–1598

    PubMed  Google Scholar 

  37. Denzinger F et al (2020) Deep learning algorithms for coronary artery plaque characterisation from CCTA scans. In: Tolxdorff T, Deserno T, Handels H, Maier A, Maier-Hein K, Palm C (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell, Springer, Wiesbaden

    Google Scholar 

  38. Jawaid MM, Riaz A, Rajani R, Reyes-Aldasoro CC, Slabaugh G (2017) Framework for detection and localization of coronary non-calcified plaques in cardiac CTA using mean radial profiles. Comput Biol Med 89:84–95

    PubMed  Google Scholar 

  39. Wei J, Zhou C, Chan HP, Chughtai A, Agarwal P, Kuriakose J et al (2014) Computerized detection of noncalcified plaques in coronary CT angiography: evaluation of topological soft gradient prescreening method and luminal analysis. Med Phys 41:081901

    PubMed  PubMed Central  Google Scholar 

  40. Kolossvary M, Karady J, Szilveszter B, Kitslaar P, Hoffmann U, Merkely B et al (2017) Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign. Circ Cardiovasc Imaging 10:e006843

    PubMed  PubMed Central  Google Scholar 

  41. Benton SM Jr, Tesche C, De Cecco CN, Duguay TM, Schoepf UJ, Bayer RR 2nd (2018) Noninvasive derivation of fractional flow reserve from coronary computed tomographic angiography: a review. J Thorac Imaging 33:88–96

    PubMed  Google Scholar 

  42. Schwartz FR, Koweek LM, Norgaard BL (2019) Current evidence in cardiothoracic imaging: computed tomography-derived fractional flow reserve in stable chest pain. J Thorac Imaging 34:12–17

    PubMed  Google Scholar 

  43. Tang CX, Liu CY, Lu MJ, Schoepf UJ, Tesche C, Bayer RR 2nd et al (2019) CT FFR for ischemia-specific CAD with a new computational fluid dynamics algorithm: a Chinese multicenter study. JACC Cardiovasc Imaging. 3(4):980–990

    Google Scholar 

  44. Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M et al (1985) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol 2016(121):42–52

    Google Scholar 

  45. Tesche C, Gray HN (2020) Machine learning and deep neural networks applications in coronary flow assessment: the case of computed tomography fractional flow reserve. J Thorac Imaging 35(Suppl 1):S66–S71

    PubMed  Google Scholar 

  46. Coenen A, Kim YH, Kruk M, Tesche C, De Geer J, Kurata A et al (2018) Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE Consortium. Circ Cardiovasc Imaging 11:e007217

    PubMed  Google Scholar 

  47. Tesche C, De Cecco CN, Baumann S, Renker M, McLaurin TW, Duguay TM et al (2018) Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling. Radiology 288:64

    PubMed  Google Scholar 

  48. von Knebel Doeberitz PL, De Cecco CN, Schoepf UJ, Duguay TM, Albrecht MH, van Assen M et al (2018) Coronary CT angiography-derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia. Eur Radiol 29(5):2378–2387

    PubMed  Google Scholar 

  49. Tang CX, Wang YN, Zhou F, Schoepf UJ, Assen MV, Stroud RE et al (2019) Diagnostic performance of fractional flow reserve derived from coronary CT angiography for detection of lesion-specific ischemia: a multi-center study and meta-analysis. Eur J Radiol 116:90–97

    PubMed  Google Scholar 

  50. Tesche C, Otani K, De Cecco CN, Coenen A, De Geer J, Kruk M et al (2019) Influence of coronary calcium on diagnostic performance of machine learning CT-FFR: results from MACHINE Registry. JACC Cardiovasc Imaging. 13(3):760–770

    PubMed  Google Scholar 

  51. Baumann S, Renker M, Schoepf UJ, De Cecco CN, Coenen A, De Geer J et al (2019) Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve—results from the MACHINE registry. Eur J Radiol 119:108657

    PubMed  Google Scholar 

  52. Tesche C, Vliegenthart R, Duguay TM, De Cecco CN, Albrecht MH, De Santis D et al (2017) Coronary computed tomographic angiography-derived fractional flow reserve for therapeutic decision making. Am J Cardiol 120:2121–2127

    PubMed  Google Scholar 

  53. von Knebel Doeberitz PL, De Cecco CN, Schoepf UJ, Albrecht MH, van Assen M, De Santis D et al (2019) Impact of coronary computerized tomography angiography-derived plaque quantification and machine-learning computerized tomography fractional flow reserve on adverse cardiac outcome. Am J Cardiol 124:1340–1348

    PubMed  Google Scholar 

  54. Xiong G, Kola D, Heo R, Elmore K, Cho I, Min JK (2015) Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest. Med Image Anal 24:77–89

    PubMed  PubMed Central  Google Scholar 

  55. Han D, Lee JH, Rizvi A, Gransar H, Baskaran L, Schulman-Marcus J et al (2018) Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: a machine learning approach. J Nucl Cardiol. 25:223–233

    PubMed  Google Scholar 

  56. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH et al (2016) Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J 38(7):500–507

    PubMed Central  Google Scholar 

  57. van Rosendael AR, Maliakal G, Kolli KK, Beecy A, Al’Aref SJ, Dwivedi A et al (2018) Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. J Cardiovasc Comput Tomogr. 12:204–209

    PubMed  Google Scholar 

  58. van Assen M, Varga-Szemes A, Schoepf UJ, Duguay TM, Hudson HT, Egorova S et al (2019) Automated plaque analysis for the prognostication of major adverse cardiac events. Eur J Radiol 116:76–83

    PubMed  Google Scholar 

  59. Johnson KM, Johnson HE, Zhao Y, Dowe DA, Staib LH (2019) Scoring of coronary artery disease characteristics on coronary CT angiograms by using machine learning. Radiology 292:354–362

    PubMed  Google Scholar 

  60. Nous FMA, Coenen A, Boersma E, Kim YH, Kruk MBP, Tesche C et al (2019) Comparison of the diagnostic performance of coronary computed tomography angiography-derived fractional flow reserve in patients with versus without diabetes mellitus (from the MACHINE Consortium). Am J Cardiol 123:537–543

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Joseph Schoepf.

Ethics declarations

Conflict of interest

UJ.S. and C.N.D.C. receive institutional research support and/or honoraria for speaking and consulting from Bayer, Bracco, Elucid BioImaging, Guerbet, HeartFlow Inc., and Siemens Healthineers. C.T. receives honoraria for speaking and consulting from HeartFlow Inc. and Siemens Healthineers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandt, V., Emrich, T., Schoepf, U.J. et al. Ischemia and outcome prediction by cardiac CT based machine learning. Int J Cardiovasc Imaging 36, 2429–2439 (2020). https://doi.org/10.1007/s10554-020-01929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01929-y

Keywords

Navigation