Skip to main content

Advertisement

Log in

Transintestinal cholesterol excretion in health and disease

  • Vascular Biology (H. Pownall, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The transintestinal cholesterol efflux (TICE) pathway is the second described route for plasma cholesterol fecal elimination. This article summarizes recent TICE research progresses, involving TICE inducers, molecular determinants of this pathway, and its role in lipoprotein metabolism.

Recent Findings

TICE is an active pathway in mice, rats, and humans. Kinetic measurements showed that under basal conditions, the relative contribution of TICE in fecal elimination of plasma cholesterol is quantitatively less important than the hepatobiliary pathway. However, the amplitude of TICE can be induced by numerous nutritional factors and pharmacological drugs. More importantly, by contrast with the stimulation of biliary cholesterol excretion that is associated with an increased risk of gallstone formation, TICE appears as a safer therapeutical target. Finally, several independent studies have demonstrated that TICE is actively contributing to the anti-atherogenic reverse cholesterol pathway reinforcing the interest to better understand its mode of action.

Summary

The discovery of TICE and the understanding of its mode of action open new therapeutical perspectives for patients at high risk of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Brufau G, Groen AK, Kuipers F. Reverse cholesterol transport revisited: contribution of biliary versus intestinal cholesterol excretion. Arterioscler Thromb Vasc Biol. 2011;31:1726–33.

    Article  CAS  PubMed  Google Scholar 

  2. Sperry WM. Lipid excretion IV. A study of the relationship of the bile to the fecal lipids with special reference to certain problems of sterol metabolism. J Biol Chem. 1927;1:351–78.

    Article  Google Scholar 

  3. Pertsemlidis D, Kirchman EH, Ahrens EH. Regulation of cholesterol metabolism in the dog. I. Effects of complete bile diversion and of cholesterol feeding on absorption, synthesis, accumulation, and excretion rates measured during life. J Clin Invest. 1973;52:2353–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van der Velde AE, Vrins CL, van den Oever K, Kunne C, Oude Elferink RP, Kuipers F, et al. Direct intestinal cholesterol secretion contributes significantly to total fecal neutral sterol excretion in mice. Gastroenterology. 2007;133:967–75.

    Article  PubMed  Google Scholar 

  5. van der Veen JN, van Dijk TH, Vrins CL, van Meer H, Havinga R, Bijsterveld K, et al. Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem. 2009;284:19211–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A. 1997;94:12610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nijstad N, Gautier T, Briand F, Rader DJ, Tietge UJ. Biliary sterol secretion is required for functional in vivo reverse cholesterol transport in mice. Gastroenterology. 2011;140:1043–51.

    Article  CAS  PubMed  Google Scholar 

  8. van der Velde AE, Vrins CL, van den Oever K, Seemann I, Oude Elferink RP, van Eck M, et al. Regulation of direct transintestinal cholesterol excretion in mice. Am J Physiol Gastrointest Liver Physiol. 2008;295:G203-208.

    Article  PubMed  Google Scholar 

  9. Vrins CL, Ottenhoff R, van den Oever K, de Waart DR, Kruyt JK, Zhao Y, et al. Trans-intestinal cholesterol efflux is not mediated through high density lipoprotein. J Lipid Res. 2012;53:2017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Le May C, Berger JM, Lespine A, Pillot B, Prieur X, Letessier E, et al. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol. 2013;33:1484–93.

    Article  PubMed  Google Scholar 

  11. Marshall SM, Gromovsky AD, Kelley KL, Davis MA, Wilson MD, Lee RG, et al. Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion. PLoS One. 2014;9:e98953.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bura KS, Lord C, Marshall S, McDaniel A, Thomas G, Warrier M, et al. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice. J Lipid Res. 2013;54:1567–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fong LG, Bonney E, Kosek JC, Cooper AD. Immunohistochemical localization of low density lipoprotein receptors in adrenal gland, liver, and intestine. J Clin Invest. 1989;84:847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stange EF, Dietschy JM. Cholesterol synthesis and low density lipoprotein uptake are regulated independently in rat small intestinal epithelium. Proc Natl Acad Sci USA. 1983;80:5739–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Le May C, Kourimate S, Langhi C, Chétiveaux M, Jarry A, Comera C, et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol. 2009;29:684–90.

    Article  PubMed  Google Scholar 

  16. van Loon NM, van Wouw SAE, Ottenhoff R, Nelson JK, Kingma J, Scheij S, et al. Regulation of intestinal LDLR by the LXR-IDOL axis. Atherosclerosis. 2020;315:1–9.

    Article  PubMed  Google Scholar 

  17. Brown JM, Bell TA, Alger HM, Sawyer JK, Smith TL, Kelley K, et al. Targeted depletion of hepatic acat2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem. 2008;283:10522–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vrins CL, van der Velde AE, van den Oever K, Levels JH, Huet S, Oude Elferink RP, et al. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux. J Lipid Res. 2009;50:2046–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grefhorst A, Verkade HJ, Groen AK. The TICE pathway: mechanisms and lipid-lowering therapies. Methodist Debakey Cardiovasc J. 2019;15:70–6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zein AA, Kaur R, Tok H, Graf GA, Lee JY. ABCG5/G8: A structural view to pathophysiology of the hepatobiliary cholesterol secretion. Biochem Soc Trans. 2019;47:1259–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jakulj L, van Dijk TH, Freark de Boer J, Kootte RS, Schonewille M, Paalvast Y., et al. Transintestinal cholesterol transport is active in mice and humans and controls ezetimibe-induced fecal neutral sterol excretion. Cell Metab. 2016;24:1–12.

  22. Nakano T, Inoue I, Takenaka Y, Ono H, Katayama S, Awata T, et al. Ezetimibe promotes brush border membrane-to-lumen cholesterol efflux in the small intestine. PLoS One. 2016;11:e0152207.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product p-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987;84:7735–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jakulj L, Vissers MN, van Roomen CP, van der Veen JN, Vrins CL, Kunne C, et al. Ezetimibe stimulates faecal neutral sterol excretion depending on abcg8 function in mice. FEBS Lett. 2010;584:3625–8.

    Article  CAS  PubMed  Google Scholar 

  25. de Boer JF, Schonewille M, Boesjes M, Wolters H, Bloks VW, Bos T, et al. Intestinal farnesoid X receptor controls transintestinal cholesterol excretion in mice. Gastroenterology. 2017;152:1126–38.

    Article  PubMed  Google Scholar 

  26. van de Peppel IP, Bertolini A, van Dijk TH, Groen AK, Jonker JW, Verkade HJ. Efficient reabsorption of transintestinally excreted cholesterol is a strong determinant for cholesterol disposal in mice. J Lipid Res. 2019;60:1562–72.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tanaka Y, Kamisako T. Regulation of the expression of cholesterol transporters by lipid-lowering drugs ezetimibe and pemafibrate in rat liver and intestine. Biochim Biophys Acta Mol Basis Dis. 2021;1867:166215.

    Article  CAS  PubMed  Google Scholar 

  28. Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, Brown AL, et al. The tmao-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 2015;10:326–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. • de Boer JF, Verkade E, Mulder NL, de Vries HD, Huijkman N, Koehorst M, et al. A human-like bile acid pool induced by deletion of hepatic cyp2c70modulates effects of FXR activation in mice. J Lipid Res. 2020;61:291-305. (This paper described the generation and phenotype of mice with presenting an acute hepatic deletion of Cyp2c70. These mice present a more hydrophobic human like BA pool that notably alter TICE activity.)

    Article  PubMed  Google Scholar 

  30. Sokolović M, Sokolović A, van Roomen CP, Gruber A, Ottenhoff R, Scheij S, et al. Unexpected effects of fasting on murine lipid homeostasis–transcriptomic and lipid profiling. J Hepatol. 2010;52:737–44.

    Article  PubMed  Google Scholar 

  31. Brufau G, Kuipers F, Lin Y, Trautwein EA, Groen AK. A reappraisal of the mechanism by which plant sterols promote neutral sterol loss in mice. PLoS One. 2011;6:e21576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakano T, Inoue I, Takenaka Y, Ikegami Y, Kotani N, Shimada A, et al. Luminal plant sterol promotes brush border membrane-to-lumen cholesterol efflux in the small intestine. J Clin Biochem Nutr. 2018;63:102–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lifsey HC, Kaur R, Thompson BH, Bennett L, Temel RE, Graf GA. Stigmasterol stimulates transintestinal cholesterol excretion independent of liver X receptor activation in the small intestine. J Nutr Biochem. 2020;76:108263.

    Article  CAS  PubMed  Google Scholar 

  34. Lee S, Youn B. Hypolipidemic roles of casein-derived peptides by regulation of trans-intestinal cholesterol excretion and bile acid synthesis. Nutrients. 2020;12:3058.

    Article  PubMed Central  Google Scholar 

  35. Pang J, Xu H, Wang X, Chen X, Li Q, Liu Q, et al. Resveratrol enhances trans-intestinal cholesterol excretion through selective activation of intestinal liver X receptor alpha. Biochem Pharmacol. 2021;186:114481.

    Article  CAS  PubMed  Google Scholar 

  36. Schonewille M, de Boer JF, Mele L, Wolters H, Bloks VW, Wolters JC, et al. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice. J Lipid Res. 2016;57:1455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sachdev V, Leopold C, Bauer R, Patankar JV, Iqbal J, Obrowsky S, et al. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism. Biochim Biophys Acta. 2016;1861:1132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meriwether D, Sulaiman D, Wagner A, Grijalva V, Kaji I, Williams KJ, et al. Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux. J Lipid Res. 2016;57:1175–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blanchard C, Moreau F, Ayer A, Toque L, Garçon D, Arnaud L, et al. Roux-en-Y gastric bypass reduces plasma cholesterol in diet-induced obese mice by affecting trans-intestinal cholesterol excretion and intestinal cholesterol absorption. Int J Obes. 2018;42:552–60.

    Article  CAS  Google Scholar 

  40. Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport. Circ Res. 2019;124:1505–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Temel RE, Sawyer JK, Yu L, Lord C, Degirolamo C, McDaniel A, et al. Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell Metab. 2010;12:96–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xie P, Jia L, Ma Y, Ou J, Miao H, Wang N, et al. Ezetimibe inhibits hepatic niemann-pick c1-like 1 to facilitate macrophage reverse cholesterol transport in mice. Arterioscler Thromb Vasc Biol. 2013;33:920–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uto-Kondo H, Ayaori M, Sotherden GM, Nakaya K, Sasaki M, Yogo M, et al. Ezetimibe enhances macrophage reverse cholesterol transport in hamsters: contribution of hepato-biliary pathway. Biochim Biophys Acta. 2014;1841:1247–55.

    Article  CAS  PubMed  Google Scholar 

  44. de Boer JF, Schonewille M, Dikkers A, Koehorst M, Havinga R, Kuipers F, et al. Transintestinal and biliary cholesterol secretion both contribute to macrophage reverse cholesterol transport in Rats-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:643–6.

    Article  PubMed  Google Scholar 

  45. Yasuda T, Grillot D, Billheimer JT, Briand F, Delerive P, Huet S, Rader DJ. Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo. Arterioscler Thromb Vasc Biol. 2010;30:781–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lo Sasso G, Murzilli S, Salvatore L, D’Errico I, Petruzzelli M, Conca P, et al. Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis. Cell Metab. 2010;12:187–93.

    Article  CAS  PubMed  Google Scholar 

  47. Cheng SH, Stanley MM. Secretion of cholesterol by intestinal mucosa in patients with complete common bile duct obstruction. Proc Soc Exp Biol Med. 1959;101:223–5.

    Article  CAS  PubMed  Google Scholar 

  48. Simmonds WJ, Hofmann AF, Theodor E. Absorption of cholesterol from a micellar solution: Intestinal perfusion studies in man. J Clin Invest. 1967;46:874–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moreau F, Blanchard C, Perret C, Flet L, Douane F, Frampas E, et al. In vivo evidence for transintestinal cholesterol efflux in patients with complete common bile duct obstruction. J Clin Lipidol. 2019;13:213–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Le May.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article is a review article in the field of Transintestinal Cholesterol Efflux. It contains previous publications based on human and animal studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Vascular Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garçon, D., Berger, JM., Cariou, B. et al. Transintestinal cholesterol excretion in health and disease. Curr Atheroscler Rep 24, 153–160 (2022). https://doi.org/10.1007/s11883-022-00995-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-022-00995-y

Keyword

Navigation