Skip to main content
Log in

Imaging Approaches to the Diagnosis of Vascular Diseases

  • Vascular Biology (H. Pownall, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Vascular imaging is a complex field including numerous modalities and imaging markers. This review is focused on important and recent findings in atherosclerotic carotid artery plaque imaging with an emphasis on developments in magnetic resonance imaging (MRI) and computed tomography (CT).

Recent Findings

Recent evidence shows that carotid plaque characteristics and not only established measures of carotid plaque burden and stenosis are associated independently with cardiovascular outcomes. On carotid MRI, the presence of a lipid-rich necrotic core (LRNC) has been associated with incident cardiovascular disease (CVD) events independent of wall thickness, a traditional measure of plaque burden. On carotid MRI, intraplaque hemorrhage (IPH) presence has been identified as an independent predictor of stroke. The presence of a fissured carotid fibrous cap has been associated with contrast enhancement on CT angiography imaging.

Summary

Carotid artery plaque characteristics have been associated with incident CVD events, and advanced plaque imaging techniques may gain additional prominence in the clinical treatment decision process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright© 2014) [8]

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Xu J, Murphy SL, Kochanek KD, Arias E: National Vital Statistics Reports. US Department of Health And Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System 2021, 70(8):1-87.

  2. Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Journal of the American College of Cardiology. 2017;70(1):1–25.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mozaffarian D. Global scourge of cardiovascular disease: time for health care systems reform and precision population health. Journal of the American College of Cardiology. 2017;70(1):26–8.

    Article  PubMed  Google Scholar 

  4. WHO I: cardiovascular diseases (CVDs). In.: WHO; 2017.

  5. Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res. 2019;124(2):315–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Libby P, Buring JE, Badimon L, et al. Atherosclerosis Nat Rev Dis Primers. 2019;5(1):56.

    Article  PubMed  Google Scholar 

  7. Naghavi M, Falk E, Hecht HS, et al. From vulnerable plaque to vulnerable patient-part III: executive summary of the screening for heart attack prevention and education (SHAPE) task force report. Am J Cardiol. 2006;98(2A):2H-15H.

    Article  PubMed  Google Scholar 

  8. Saba L, Anzidei M, Marincola BC, et al. Imaging of the carotid artery vulnerable plaque. Cardiovasc Intervent Radiol. 2014;37(3):572–85.

    Article  PubMed  Google Scholar 

  9. Hellings WE, Moll FL, De Vries JP, et al. Atherosclerotic plaque composition and occurrence of restenosis after carotid endarterectomy. JAMA. 2008;299(5):547–54.

    Article  CAS  PubMed  Google Scholar 

  10. Tomaniak M, Katagiri Y, Modolo R, et al. Vulnerable plaques and patients: state-of-the-art. European Heart Journal. 2020;41(31):2997–3004.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hara T, Jaffer FA: Intravascular NIRF molecular imaging approaches in coronary artery disease. Curr Cardiovasc Imaging Rep 2016, 9.

  12. Tarkin JM, Dweck MR, Evans NR, et al. Imaging atherosclerosis. Circ Res. 2016;118(4):750–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nishimiya K, Matsumoto Y, Shimokawa H. Recent advances in vascular imaging. Arteriosclerosis, thrombosis, and vascular biology. 2020;40(12):e313–21.

    Article  CAS  PubMed  Google Scholar 

  14. •• Brunner G, Virani SS, Sun W, et al. Associations between carotid artery plaque burden, plaque characteristics, and cardiovascular events: the ARIC carotid magnetic resonance imaging study. JAMA Cardiol. 2021;6(1):79–86. This paper showed that the presence of a carotid lipid core is associated with incident CVD events independent of carotid wall thickness, a measure of plaque burden.

  15. Carr JJ, Nelson JC, Wong ND, et al. Calcified coronary artery plaque measurement with cardiac CT in population-based studies: standardized protocol of multi-ethnic study of atherosclerosis (MESA) and coronary artery risk development in young adults (CARDIA) study. Radiology. 2005;234(1):35–43.

    Article  PubMed  Google Scholar 

  16. Fayad ZA, Fuster V, Nikolaou K, Becker C. Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts. Circulation. 2002;106(15):2026–34.

    Article  PubMed  Google Scholar 

  17. DeMaria AN, Narula J, Mahmud E, Tsimikas S. Imaging vulnerable plaque by ultrasound. Journal of the American College of Cardiology. 2006;47(8 Suppl):C32-39.

    Article  PubMed  Google Scholar 

  18. Hussain A, Brunner G, Nambi V: Ultrasound and MRI assessment of cardiovascular risk. In: ASPC Manual of Preventive Cardiology. Edited by Wong ND, Amsterdam EA, Toth PP. Cham: Springer International Publishing; 2021: 391-415.

  19. Saba L, Yuan C, Hatsukami TS, et al. Carotid artery wall imaging: perspective and guidelines from the ASNR vessel wall imaging study group and expert consensus recommendations of the American Society of Neuroradiology. AJNR American journal of neuroradiology. 2018;39(2):E9–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar A, Yang EY, Brunner G, et al: Plaque volume of carotid endarterectomy (cea) specimens measured using a novel 3-dimensional ultrasound (3dus) technology. JACC: Cardiovascular Imaging 2016, 9(9):1118-1119.

  21. Gerd Brunner, Eric Yang, Joel Morrisett, Zsolt Garami, Nambi V: Image fusion technology. In: Multi-Modality Atherosclerosis Imaging and Diagnosis. Edited by Luca Saba, João Sanches, Luís Mendes Pedro, Jasjit S. Suri: Springer; 2013: 385-398.

  22. Nambi V, Brunner G, Ballantyne CM: Ultrasound in cardiovascular risk prediction: don’t forget the plaque! J Am Heart Assoc 2013, 2(2):e000180.

  23. Trial North American Symptomatic Carotid Endarterectomy. Methods, patient characteristics, and progress. Stroke; a journal of cerebral circulation. 1991;22(6):711–20.

    Article  Google Scholar 

  24. Gerszten RE, Lim YC, Ding HT, et al. Adhesion of monocytes to vascular cell adhesion molecule-1-transduced human endothelial cells: implications for atherogenesis. Circ Res. 1998;82(8):871–8.

    Article  CAS  PubMed  Google Scholar 

  25. Andres V. Control of vascular cell proliferation and migration by cyclin-dependent kinase signalling: new perspectives and therapeutic potential. Cardiovasc Res. 2004;63(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  26. Stary HC, Chandler AB, Glagov S, et al: A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Circulation 1994, 89(5):2462-2478.

  27. Polsani V, Kerwin W, Xu D, et al. Comparison of right vs left carotid artery atherosclerotic plaque dimensions and composition by high-resolution magnetic resonance imaging (MRI). Arteriosclerosis Thrombosis and Vascular Biology. 2009;29(7):E117–E117.

    Google Scholar 

  28. Morrisett J, Vick W, Sharma R, et al. Discrimination of components in atherosclerotic plaques from human carotid endarterectomy specimens by magnetic resonance imaging ex vivo. Magn Reson Imaging. 2003;21(5):465–74.

    Article  PubMed  Google Scholar 

  29. Karmonik C, Basto P, Vickers K, et al: Quantitative segmentation of principal carotid atherosclerotic lesion components by feature space analysis based on multicontrast MRI at 1.5 T. IEEE Trans Biomed Eng 2009, 56(2):352-360.

  30. Ababneh B, Rejjal L, Pokharel Y, et al. Distribution of calcification in carotid endarterectomy tissues: comparison of micro-computed tomography imaging with histology. Vasc Med. 2014;19(5):343–50.

    Article  PubMed  Google Scholar 

  31. Aidi HE, Mani V, Weinshelbaum KB, et al. MRI plaque burden of the carotid arteries and aorta : reproducibility, age, sex and systemic distribution. Nature Clinical Practice Cardiovascular Medicine. 2009;6(3):219–28.

    PubMed  PubMed Central  Google Scholar 

  32. Kassem M, Florea A, Mottaghy FM, van Oostenbrugge R, Kooi ME. Magnetic resonance imaging of carotid plaques: current status and clinical perspectives. Ann Transl Med. 2020;8(19):1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwee RM, van Oostenbrugge RJ, Hofstra L, et al. Identifying vulnerable carotid plaques by noninvasive imaging. Neurology. 2008;70(24 Pt 2):2401–9.

    Article  CAS  PubMed  Google Scholar 

  34. Zavodni AE, Wasserman BA, McClelland RL, et al. Carotid artery plaque morphology and composition in relation to incident cardiovascular events: the Multi-Ethnic Study of Atherosclerosis (MESA). Radiology. 2014;271(2):381–9.

    Article  PubMed  Google Scholar 

  35. Zhang Y, Guallar E, Malhotra S, et al. Carotid artery wall thickness and incident cardiovascular events: a comparison between US and MRI in the Multi-Ethnic Study of Atherosclerosis (MESA). Radiology. 2018;289(3):649–57.

    Article  PubMed  Google Scholar 

  36. Takai H, Uemura J, Yagita Y, et al. Plaque characteristics of patients with symptomatic mild carotid artery stenosis. J Stroke Cerebrovasc Dis. 2018;27(7):1930–6.

    Article  PubMed  Google Scholar 

  37. Arias Lorza AM, van Engelen A, Petersen J, van der Lugt A, de Bruijne M. Maximization of regional probabilities using optimal surface graphs: application to carotid artery segmentation in MRI. Medical physics. 2018;45(3):1159–69.

    Article  PubMed  Google Scholar 

  38. van den Bouwhuijsen QJ, Vernooij MW, Hofman A, Krestin GP, van der Lugt A, Witteman JC. Determinants of magnetic resonance imaging detected carotid plaque components: the Rotterdam Study. Eur Heart J. 2012;33(2):221–9.

    Article  PubMed  Google Scholar 

  39. Hagiwara Y, Takao N, Takada T, et al. Contrast-enhanced carotid ultrasonography and MRI plaque imaging to identify patients developing in-stent intimal hyperplasia after carotid artery stenting. Med Ultrason. 2019;21(2):170–4.

    Article  PubMed  Google Scholar 

  40. Adams GJ, Simoni DM, Bordelon CB Jr, et al. Bilateral symmetry of human carotid artery atherosclerosis. Stroke; a journal of cerebral circulation. 2002;33(11):2575–80.

    Article  Google Scholar 

  41. Bizopoulos PA, Sakellarios A, Michalis LK, Koutsouris DD, Fotiadis DI. 3-D registration on carotid artery imaging data: MRI for different timesteps. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:1159–62.

    PubMed  Google Scholar 

  42. Zhang R, Zhang Q, Ji A, et al. Identification of high-risk carotid plaque with MRI-based radiomics and machine learning. Eur Radiol. 2021;31(5):3116–26.

    Article  PubMed  Google Scholar 

  43. Watase H, Sun J, Hippe DS, et al. Carotid artery remodeling is segment specific: an in vivo study by vessel wall magnetic resonance imaging. Arteriosclerosis, thrombosis, and vascular biology. 2018;38(4):927–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luo L, Liu S, Tong X, et al. Carotid artery segmentation using level set method with double adaptive threshold (DATLS) on TOF-MRA images. Magn Reson Imaging. 2019;63:123–30.

    Article  PubMed  Google Scholar 

  45. Wu J, Xin J, Yang X, et al. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI. Medical physics. 2019;46(12):5544–61.

    Article  PubMed  Google Scholar 

  46. Brunner G, Chittajallu DR, Kurkure U, Kakadiaris IA. Toward the automatic detection of coronary artery calcification in non-contrast computed tomography data. Int J Cardiovasc Imaging. 2010;26(7):829–38.

    Article  PubMed  Google Scholar 

  47. Marlevi D, Mulvagh SL, Huang R, et al. Combined spatiotemporal and frequency-dependent shear wave elastography enables detection of vulnerable carotid plaques as validated by MRI. Sci Rep. 2020;10(1):403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Derksen WJ, Peeters W, van Lammeren GW, et al. Different stages of intraplaque hemorrhage are associated with different plaque phenotypes: a large histopathological study in 794 carotid and 276 femoral endarterectomy specimens. Atherosclerosis. 2011;218(2):369–77.

    Article  CAS  PubMed  Google Scholar 

  49. Larson AS, Benson JC, Brinjikji W, et al. Variations in the presence of carotid intraplaque hemorrhage across age categories: what age groups are most likely to benefit from plaque imaging? Front Neurol. 2020;11:603055.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tapis P, El-Koussy M, Hewer E, Mono ML, Reinert M: Plaque vulnerability in patients with high- and moderate-grade carotid stenosis - comparison of plaque features on MRI with histopathological findings. Swiss Med Wkly 2020, 150:w20174.

  51. Porambo ME, DeMarco JK. MR imaging of vulnerable carotid plaque. Cardiovasc Diagn Ther. 2020;10(4):1019–31.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mura M, Della Schiava N, Long A, Chirico EN, Pialoux V, Millon A. Carotid intraplaque haemorrhage: pathogenesis, histological classification, imaging methods and clinical value. Ann Transl Med. 2020;8(19):1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Albuquerque LC, Narvaes LB, Maciel AA, et al. Intraplaque hemorrhage assessed by high-resolution magnetic resonance imaging and C-reactive protein in carotid atherosclerosis. Journal of vascular surgery. 2007;46(6):1130–7.

    Article  PubMed  Google Scholar 

  54. Wasserman BA, Astor BC, Sharrett AR, Swingen C, Catellier D. MRI measurements of carotid plaque in the atherosclerosis risk in communities (ARIC) study: methods, reliability and descriptive statistics. Journal of magnetic resonance imaging : JMRI. 2010;31(2):406–15.

    Article  PubMed  Google Scholar 

  55. Schindler A, Schinner R, Altaf N, et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: meta-analysis of individual patient data. JACC Cardiovasc Imaging. 2020;13(2 Pt 1):395–406.

    Article  PubMed  Google Scholar 

  56. Dilba K, van Dijk AC, Crombag G, et al. Association between intraplaque hemorrhage and vascular remodeling in carotid arteries: the Plaque at RISK (PARISK) study. Cerebrovasc Dis. 2021;50(1):94–9.

    Article  PubMed  Google Scholar 

  57. Lin R, Chen S, Liu G, Xue Y, Zhao X. Association Between carotid atherosclerotic plaque calcification and intraplaque hemorrhage: a magnetic resonance imaging study. Arteriosclerosis, thrombosis, and vascular biology. 2017;37(6):1228–33.

    Article  CAS  PubMed  Google Scholar 

  58. Cui Y, Qiao H, Ma L, et al. Association of age and size of carotid artery intraplaque hemorrhage and minor fibrous cap disruption: a high resolution magnetic resonance imaging study. J Atheroscler Thromb. 2018;25(12):1222–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Takaya N, Cai J, Ferguson MS, et al. Intra- and interreader reproducibility of magnetic resonance imaging for quantifying the lipid-rich necrotic core is improved with gadolinium contrast enhancement. Journal of magnetic resonance imaging : JMRI. 2006;24(1):203–10.

    Article  PubMed  Google Scholar 

  60. Cai J, Hatsukami TS, Ferguson MS, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation. 2005;112(22):3437–44.

    Article  PubMed  Google Scholar 

  61. Sun J, Zhao XQ, Balu N, et al. Carotid plaque lipid content and fibrous cap status predict systemic CV outcomes: the MRI substudy in AIM-HIGH. JACC Cardiovasc Imaging. 2017;10(3):241–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Brinjikji W, Huston J 3rd, Rabinstein AA, Kim GM, Lerman A, Lanzino G. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability. J Neurosurg. 2016;124(1):27–42.

    Article  CAS  PubMed  Google Scholar 

  63. Rafailidis V, Chryssogonidis I, Tegos T, Kouskouras K, Charitanti-Kouridou A. Imaging of the ulcerated carotid atherosclerotic plaque: a review of the literature. Insights Imaging. 2017;8(2):213–25.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Xu D, Hippe DS, Underhill HR, et al. Prediction of high-risk plaque development and plaque progression with the carotid atherosclerosis score. JACC Cardiovasc Imaging. 2014;7(4):366–73.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pugliese G, Iacobini C, Blasetti Fantauzzi C, Menini S. The dark and bright side of atherosclerotic calcification. Atherosclerosis. 2015;238(2):220–30.

    Article  CAS  PubMed  Google Scholar 

  66. Pletsch-Borba L, Selwaness M, van der Lugt A, Hofman A, Franco OH, Vernooij MW: Change in carotid plaque components: a 4-year follow-up study with serial mr imaging. JACC Cardiovasc Imaging 2018, 11(2 Pt 1):184-192. This paper indicated that carotid plaque characteristics can change significantly over a period of 4 years, and the development of plaque components was mainly associated with hypertension and serum cholesterol levels.

  67. Vickers KC, Castro-Chavez F, Morrisett JD. Lyso-phosphatidylcholine induces osteogenic gene expression and phenotype in vascular smooth muscle cells. Atherosclerosis. 2010;211(1):122–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hope MD, Hope TA, Zhu C, et al. Vascular imaging with ferumoxytol as a contrast agent. AJR American journal of roentgenology. 2015;205(3):W366-373.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Brenner DJ. Slowing the increase in the population dose resulting from CT scans. Radiat Res. 2010;174(6):809–15.

    Article  CAS  PubMed  Google Scholar 

  70. Silvennoinen HM, Ikonen S, Soinne L, Railo M, Valanne L. CT angiographic analysis of carotid artery stenosis: comparison of manual assessment, semiautomatic vessel analysis, and digital subtraction angiography. AJNR American journal of neuroradiology. 2007;28(1):97–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hounsfield GN: Computed medical imaging. Nobel lecture, Decemberr 8, 1979. J Comput Assist Tomogr 1980, 4(5):665-674.

  72. Saba L, Mallarini G. Carotid plaque enhancement and symptom correlations: an evaluation by using multidetector row CT angiography. AJNR American journal of neuroradiology. 2011;32(10):1919–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Leschka S, Scheffel H, Desbiolles L, et al. Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Invest Radiol. 2007;42(8):543–9.

    Article  PubMed  Google Scholar 

  74. Das M, Braunschweig T, Muhlenbruch G, et al. Carotid plaque analysis: comparison of dual-source computed tomography (CT) findings and histopathological correlation. Eur J Vasc Endovasc Surg. 2009;38(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  75. de Weert TT, Ouhlous M, Meijering E, et al. In vivo characterization and quantification of atherosclerotic carotid plaque components with multidetector computed tomography and histopathological correlation. Arteriosclerosis, thrombosis, and vascular biology. 2006;26(10):2366–72.

    Article  PubMed  Google Scholar 

  76. Chrencik MT, Khan AA, Luther L, et al. Quantitative assessment of carotid plaque morphology (geometry and tissue composition) using computed tomography angiography. Journal of vascular surgery. 2019;70(3):858–68.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Anzidei M, Suri JS, Saba L, et al. Longitudinal assessment of carotid atherosclerosis after radiation therapy using computed tomography: a case control study. Eur Radiol. 2016;26(1):72–8.

    Article  PubMed  Google Scholar 

  78. van Gils MJ, Vukadinovic D, van Dijk AC, Dippel DW, Niessen WJ, van der Lugt A. Carotid atherosclerotic plaque progression and change in plaque composition over time: a 5-year follow-up study using serial CT angiography. AJNR American journal of neuroradiology. 2012;33(7):1267–73.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pelz DM, Lownie SP, Lee DH, Boulton MR. Plaque morphology (the PLAC Scale) on CT angiography: predicting long-term anatomical success of primary carotid stenting. J Neurosurg. 2015;123(4):856–61.

    Article  CAS  PubMed  Google Scholar 

  80. Joshi FR, Rajani NK, Abt M, et al. Does vascular calcification accelerate inflammation?: a substudy of the dal-PLAQUE trial. Journal of the American College of Cardiology. 2016;67(1):69–78.

    Article  PubMed  Google Scholar 

  81. Shanahan CM. Inflammation ushers in calcification: a cycle of damage and protection? Circulation. 2007;116(24):2782–5.

    Article  PubMed  Google Scholar 

  82. Wolf RL, Wehrli SL, Popescu AM, et al. Mineral volume and morphology in carotid plaque specimens using high-resolution MRI and CT. Arteriosclerosis, thrombosis, and vascular biology. 2005;25(8):1729–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. Journal of the American College of Cardiology. 1990;15(4):827–32.

    Article  CAS  PubMed  Google Scholar 

  84. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology. 2003;228(3):826–33.

    Article  PubMed  Google Scholar 

  85. Budoff MJ, Nasir K, McClelland RL, et al. Coronary calcium predicts events better with absolute calcium scores than age-sex-race/ethnicity percentiles: MESA (Multi-Ethnic Study of Atherosclerosis). Journal of the American College of Cardiology. 2009;53(4):345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Criqui MH, Denenberg JO, Ix JH, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. Jama. 2014;311(3):271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Farb A, Burke AP, Tang AL, et al: Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996, 93(7):1354-1363.

  88. Virmani R, Burke AP, Kolodgie FD, Farb A. Vulnerable plaque: the pathology of unstable coronary lesions. JIntervCardiol. 2002;15(6):439–46.

    Google Scholar 

  89. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92(3):657–71.

    Article  CAS  PubMed  Google Scholar 

  90. Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(40):14678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cox AJ, Hsu FC, Agarwal S, et al. Prediction of mortality using a multi-bed vascular calcification score in the Diabetes Heart Study. Cardiovascular diabetology. 2014;13:160.

    Article  PubMed  PubMed Central  Google Scholar 

  92. McKinney AM, Casey SO, Teksam M, et al. Carotid bifurcation calcium and correlation with percent stenosis of the internal carotid artery on CT angiography. Neuroradiology. 2005;47(1):1–9.

    Article  PubMed  Google Scholar 

  93. Sarikaya B, Lohman B, McKinney AM, Gadani S, Irfan M, Lucato L. Correlation between carotid bifurcation calcium burden on non-enhanced CT and percentage stenosis, as confirmed by digital subtraction angiography. The British journal of radiology. 2012;85(1015):e284-292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nandalur KR, Baskurt E, Hagspiel KD, et al. Carotid artery calcification on CT may independently predict stroke risk. AJR American journal of roentgenology. 2006;186(2):547–52.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ababneh B, Rejjal L, Pokharel Y, et al. Distribution of calcification in carotid endarterectomy tissues: comparison of micro-computed tomography imaging to histology. Vascular Medicine. 2014;19(5):343–50.

    Article  PubMed  Google Scholar 

  96. Jeziorska M, McCollum C, Woolley DE. Calcification in atherosclerotic plaque of human carotid arteries: associations with mast cells and macrophages. The Journal of pathology. 1998;185(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  97. Bertazzo S, Gentleman E, Cloyd KL, Chester AH, Yacoub MH, Stevens MM. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nature materials. 2013;12(6):576–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miller JD. Cardiovascular calcification: orbicular origins. Nature materials. 2013;12(6):476–8.

    Article  CAS  PubMed  Google Scholar 

  99. Han RI, Wheeler TM, Lumsden AB, et al. Morphometric analysis of calcification and fibrous layer thickness in carotid endarterectomy tissues. Computers in Biology and Medicine. 2016;70:210–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Castro-Chavez F, Vickers KC, Lee JS, Tung CH, Morrisett JD. Effect of lyso-phosphatidylcholine and Schnurri-3 on osteogenic transdifferentiation of vascular smooth muscle cells to calcifying vascular cells in 3D culture. Biochimica et biophysica acta. 2013;1830(6):3828–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103(8):1051–6.

    Article  CAS  PubMed  Google Scholar 

  102. Shaalan WE, Cheng H, Gewertz B, et al. Degree of carotid plaque calcification in relation to symptomatic outcome and plaque inflammation. Journal of vascular surgery. 2004;40(2):262–9.

    Article  PubMed  Google Scholar 

  103. Kelly-Arnold A, Maldonado N, Laudier D, Aikawa E, Cardoso L, Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(26):10741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mauriello A, Servadei F, Sangiorgi G, et al. Asymptomatic carotid plaque rupture with unexpected thrombosis over a non-canonical vulnerable lesion. Atherosclerosis. 2011;218(2):356–62.

    Article  CAS  PubMed  Google Scholar 

  105. JM UK-I, Fox AJ, Aviv RI, et al: Characterization of carotid plaque hemorrhage: a CT angiography and MR intraplaque hemorrhage study. Stroke; a journal of cerebral circulation 2010, 41(8):1623-1629.

  106. Eisenmenger LB, Aldred BW, Kim SE, et al. Prediction of carotid intraplaque hemorrhage using adventitial calcification and plaque thickness on CTA. AJNR American journal of neuroradiology. 2016;37(8):1496–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ajduk M, Bulimbasic S, Pavic L, et al. Comparison of multidetector-row computed tomography and duplex Doppler ultrasonography in detecting atherosclerotic carotid plaques complicated with intraplaque hemorrhage. Coll Antropol. 2013;37(1):213–9.

    PubMed  Google Scholar 

  108. Saba L, Francone M, Bassareo PP, et al. CT attenuation analysis of carotid intraplaque hemorrhage. AJNR American journal of neuroradiology. 2018;39(1):131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wintermark M, Jawadi SS, Rapp JH, et al. High-resolution CT imaging of carotid artery atherosclerotic plaques. AJNR American journal of neuroradiology. 2008;29(5):875–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Saba L, Mallarin G. Window settings for the study of calcified carotid plaques with multidetector CT angiography. AJNR American journal of neuroradiology. 2009;30(7):1445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Saba L, Tamponi E, Raz E, et al. Correlation between fissured fibrous cap and contrast enhancement: preliminary results with the use of CTA and histologic validation. AJNR American journal of neuroradiology. 2014;35(4):754–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Romero JM, Babiarz LS, Forero NP, et al. Arterial wall enhancement overlying carotid plaque on CT angiography correlates with symptoms in patients with high grade stenosis. Stroke; a journal of cerebral circulation. 2009;40(5):1894–6.

    Article  Google Scholar 

  113. Mosleh W, Adib K, Natdanai P, et al. High-risk carotid plaques identified by CT-angiogram can predict acute myocardial infarction. Int J Cardiovasc Imaging. 2017;33(4):561–8.

    Article  PubMed  Google Scholar 

  114. Magge R, Lau BC, Soares BP, et al. Clinical risk factors and CT imaging features of carotid atherosclerotic plaques as predictors of new incident carotid ischemic stroke: a retrospective cohort study. AJNR American journal of neuroradiology. 2013;34(2):402–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mehta A, Rigdon J, Tattersall MC, et al: Association of carotid artery plaque with cardiovascular events and incident coronary artery calcium in individuals with absent coronary calcification: the MESA. Circ Cardiovasc Imaging 2021, 14(4):e011701.

  116. Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. The New England journal of medicine. 2007;357(22):2277–84.

    Article  CAS  PubMed  Google Scholar 

  117. Hong J-Y, Han K, Jung J-H, Kim JS. Association of exposure to diagnostic low-dose ionizing radiation with risk of cancer among youths in South Korea. JAMA Network Open. 2019;2(9):e1910584–e1910584.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Andreucci M, Solomon R, Tasanarong A: Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention. Biomed Res Int 2014, 2014:741018.

  119. Nickoloff EL, Alderson PO. Radiation exposures to patients from CT: reality, public perception, and policy. AJR American journal of roentgenology. 2001;177(2):285–7.

    Article  CAS  PubMed  Google Scholar 

  120. Alkhalil M, Biasiolli L, Akbar N, et al. T2 mapping MRI technique quantifies carotid plaque lipid, and its depletion after statin initiation, following acute myocardial infarction. Atherosclerosis. 2018;279:100–6.

    Article  CAS  PubMed  Google Scholar 

  121. Li Y, Zhu G, Ding V, et al. Assessing the relationship between atherosclerotic cardiovascular disease risk score and carotid artery imaging findings. J Neuroimaging. 2019;29(1):119–25.

    Article  PubMed  Google Scholar 

  122. Selwaness M, Bos D, van den Bouwhuijsen Q, et al. Carotid atherosclerotic plaque characteristics on magnetic resonance imaging relate with history of stroke and coronary heart disease. Stroke; a journal of cerebral circulation. 2016;47(6):1542–7.

    Article  Google Scholar 

  123. Bartlett ES, Walters TD, Symons SP, Fox AJ. Quantification of carotid stenosis on CT angiography. AJNR American journal of neuroradiology. 2006;27(1):13–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Saba L, Mallarini G. MDCTA of carotid plaque degree of stenosis: evaluation of interobserver agreement. AJR American journal of roentgenology. 2008;190(1):W41-46.

    Article  PubMed  Google Scholar 

  125. Walker LJ, Ismail A, McMeekin W, Lambert D, Mendelow AD, Birchall D. Computed tomography angiography for the evaluation of carotid atherosclerotic plaque: correlation with histopathology of endarterectomy specimens. Stroke; a journal of cerebral circulation. 2002;33(4):977–81.

    Article  Google Scholar 

  126. Watanabe Y, Nakazawa T, Higashi M, Itoh T, Naito H. Assessment of calcified carotid plaque volume: comparison of contrast-enhanced dual-energy CT angiography and native single-energy CT. AJR American journal of roentgenology. 2011;196(6):W796-799.

    Article  PubMed  Google Scholar 

  127. Saba L, Caddeo G, Sanfilippo R, Montisci R, Mallarini G. Efficacy and sensitivity of axial scans and different reconstruction methods in the study of the ulcerated carotid plaque using multidetector-row CT angiography: comparison with surgical results. AJNR American journal of neuroradiology. 2007;28(4):716–23.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part with funding from the National Institutes of Health (R01HL137763, K25HL121149, both to GB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Brunner.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article is a review article in the field of vascular imaging. All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Vascular Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimnich, O.A., Zil-E-Ali, A. & Brunner, G. Imaging Approaches to the Diagnosis of Vascular Diseases. Curr Atheroscler Rep 24, 85–96 (2022). https://doi.org/10.1007/s11883-022-00988-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-022-00988-x

Keywords

Navigation