Skip to main content

Advertisement

Log in

New Pharmacological Approaches to Target PCSK9

  • Nonstatin Drugs (M. Vrablik, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Proprotein convertase subtilisin kexin 9 (PCSK9) plays a crucial role in regulating circulating levels of LDL-C as a consequence of its ability to inhibit LDL receptor recycling in the liver. Loss of function variants in the PCSK9 gene result in low LDL-C levels and associate with reduced cardiovascular risk, whereas gain of-function variants associate with hypercholesterolemia and increased risk of early cardiovascular events. Thus, PCSK9 inhibition has been established as an additional approach for the treatment of hypercholesterolemia. The aim of this review is to provide a brief overview of current strategies targeting PCSK9 and discuss clinical results of the emerging approaches.

Recent Findings

Two monoclonal antibodies targeting circulating PCSK9 (evolocumab and alirocumab) have been approved for the treatment of hypercholesterolemia and cardiovascular disease. Later, a gene silencing approach (inclisiran), which inhibits hepatic PCSK9 synthesis, was shown to be as effective as monoclonal antibodies but with a twice a year injection and is currently under evaluation for approval. Due to the elevated costs of such therapies, several other approaches have been explored, including peptide-based anti PCSK9 vaccination, and small oral PCSK9 inhibitors, which are still in preclinical phase.

Summary

In the coming years, we will assist to a progressive introduction of novel anti-PCSK9 approaches in the clinical practice for the treatment of patients with hypercholesterolemia as well as patients at high cardiovascular risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100(3):928–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Norata GD, Tibolla G, Catapano AL. Targeting PCSK9 for hypercholesterolemia. Annu Rev Pharmacol Toxicol. 2014;54:273–93.

    CAS  PubMed  Google Scholar 

  3. Lagace TA. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr Opin Lipidol. 2014;25(5):387–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tibolla G, Norata GD, Artali R, Meneghetti F, Catapano AL. Proprotein convertase subtilisin/kexin type 9 (PCSK9): from structure-function relation to therapeutic inhibition. Nutr Metab Cardiovasc Dis. 2011;21(11):835–43.

    CAS  PubMed  Google Scholar 

  5. Sharifi M, Futema M, Nair D, Humphries SE. Genetic architecture of familial hypercholesterolaemia. Curr Cardiol Rep. 2017;19(5):44.

    PubMed  PubMed Central  Google Scholar 

  6. Norata GD, Garlaschelli K, Grigore L, et al. Effects of PCSK9 variants on common carotid artery intima media thickness and relation to ApoE alleles. Atherosclerosis. 2010;208(1):177–82.

    CAS  PubMed  Google Scholar 

  7. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.

    CAS  PubMed  Google Scholar 

  8. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–5.

    CAS  PubMed  Google Scholar 

  9. Kathiresan S. A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med. 2008;358(21):2299–300.

    CAS  PubMed  Google Scholar 

  10. Norata GD, Ballantyne CM, Catapano AL. New therapeutic principles in dyslipidaemia: focus on LDL and Lp(a) lowering drugs. Eur Heart J. 2013;34(24):1783–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Seidah NG, Prat A, Pirillo A, Catapano AL, Norata GD. Novel strategies to target proprotein convertase subtilisin kexin 9: beyond monoclonal antibodies. Cardiovasc Res. 2019;115(3):510–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Norata GD, Tibolla G, Catapano AL. PCSK9 inhibition for the treatment of hypercholesterolemia: promises and emerging challenges. Vasc Pharmacol. 2014;62(2):103–11.

    CAS  Google Scholar 

  13. Norata GD, Tavori H, Pirillo A, Fazio S, Catapano AL. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res. 2016;112(1):429–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Da Dalt L, Ruscica M, Bonacina F, et al. PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur Heart J. 2019;40(4):357–68.

    PubMed  Google Scholar 

  15. Mbikay M, Sirois F, Gyamera-Acheampong C, et al. Variable effects of gender and Western diet on lipid and glucose homeostasis in aged PCSK9-deficient C57BL/6 mice CSK9PC57BL/6. J Diabetes. 2015;7(1):74–84.

    CAS  PubMed  Google Scholar 

  16. Perego C, Da Dalt L, Pirillo A, Galli A, Catapano AL, Norata GD. Cholesterol metabolism, pancreatic beta-cell function and diabetes. Biochim biophys Acta Mol Basis Dis. 2019;1865(9):2149–56.

    CAS  PubMed  Google Scholar 

  17. Baragetti A, Grejtakova D, Casula M, et al. Proprotein convertase subtilisin-kexin type-9 (PCSK9) and triglyceride-rich lipoprotein metabolism: facts and gaps. Pharmacol Res. 2018;130:1–11.

    CAS  PubMed  Google Scholar 

  18. Baragetti A, Balzarotti G, Grigore L, et al. PCSK9 deficiency results in increased ectopic fat accumulation in experimental models and in humans. Eur J Prev Cardiol. 2017;24(17):1870–7.

    PubMed  Google Scholar 

  19. Ference BA, Robinson JG, Brook RD, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375(22):2144–53.

    CAS  PubMed  Google Scholar 

  20. Lotta LA, Sharp SJ, Burgess S, et al. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA. 2016;316(13):1383–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmidt AF, Swerdlow DI, Holmes MV, et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2017;5(2):97–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sabatine MS, Leiter LA, Wiviott SD, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(12):941–50.

    CAS  PubMed  Google Scholar 

  23. Ray KK, Colhoun HM, Szarek M, et al. Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(8):618–28.

    CAS  PubMed  Google Scholar 

  24. Zhao Z, Tuakli-Wosornu Y, Lagace TA, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79(3):514–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. •• Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22 This study provides the first evidence of the significant clinical efficacy of evolocumab.

    CAS  PubMed  Google Scholar 

  26. •• Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097–107 This trial showed a significant reduction of CV events among very high risk patients treated with alirocumab on top of their maximal tolerated lipid-lowering therapy.

    CAS  PubMed  Google Scholar 

  27. Bonaca MP, Nault P, Giugliano RP, et al. Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease: insights from the FOURIER trial (Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk). Circulation. 2018;137(4):338–50.

    CAS  PubMed  Google Scholar 

  28. Sabatine MS, De Ferrari GM, Giugliano RP, et al. Clinical benefit of evolocumab by severity and extent of coronary artery disease. Circulation. 2018;138(8):756–66.

    CAS  PubMed  Google Scholar 

  29. Giugliano RP, Wiviott SD, Blazing MA, et al. Long-term safety and efficacy of achieving very low levels of low-density lipoprotein cholesterol : a prespecified analysis of the IMPROVE-IT trial. JAMA Cardiol. 2017;2(5):547–55.

    PubMed  PubMed Central  Google Scholar 

  30. Giugliano RP, Pedersen TR, Park JG, et al. Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet. 2017;390(10106):1962–71.

    CAS  PubMed  Google Scholar 

  31. Robinson JG, Rosenson RS, Farnier M, et al. Safety of very low low-density lipoprotein cholesterol levels with alirocumab: pooled data from randomized trials. J Am Coll Cardiol. 2017;69(5):471–82.

    CAS  PubMed  Google Scholar 

  32. Toth PP, Descamps O, Genest J, et al. Pooled safety analysis of evolocumab in over 6000 patients from double-blind and open-label extension studies. Circulation. 2017;135(19):1819–31.

    CAS  PubMed  Google Scholar 

  33. Jones PH, Bays HE, Chaudhari U, et al. Safety of alirocumab (a PCSK9 monoclonal antibody) from 14 randomized trials. Am J Cardiol. 2016;118(12):1805–11.

    CAS  PubMed  Google Scholar 

  34. Cao YX, Liu HH, Dong QT, Li S, Li JJ. Effect of proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies on new-onset diabetes mellitus and glucose metabolism: a systematic review and meta-analysis. Diabetes Obes Metab. 2018;20(6):1391–8.

    CAS  PubMed  Google Scholar 

  35. Giugliano RP, Mach F, Zavitz K, et al. Cognitive function in a randomized trial of Evolocumab. N Engl J Med. 2017;377(7):633–43.

    CAS  PubMed  Google Scholar 

  36. Koren MJ, Sabatine MS, Giugliano RP, et al. Long-term low-density lipoprotein cholesterol-lowering efficacy, persistence, and safety of evolocumab in treatment of hypercholesterolemia: results up to 4 years from the open-label OSLER-1 extension study. JAMA Cardiol. 2017;2(6):598–607.

    PubMed  PubMed Central  Google Scholar 

  37. Farnier M, Hovingh GK, Langslet G, et al. Long-term safety and efficacy of alirocumab in patients with heterozygous familial hypercholesterolemia: an open-label extension of the ODYSSEY program. Atherosclerosis. 2018;278:307–14.

    CAS  PubMed  Google Scholar 

  38. Roth EM, Goldberg AC, Catapano AL, et al. Antidrug antibodies in patients treated with Alirocumab. N Engl J Med. 2017;376(16):1589–90.

    PubMed  Google Scholar 

  39. Ridker PM, Tardif JC, Amarenco P, et al. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N Engl J Med. 2017;376(16):1517–26.

    CAS  PubMed  Google Scholar 

  40. Norata GD, Tibolla G, Catapano AL. Gene silencing approaches for the management of dyslipidaemia. Trends Pharmacol Sci. 2013;34(4):198–205.

    CAS  PubMed  Google Scholar 

  41. Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol. 2012;226(2):365–79.

    CAS  PubMed  Google Scholar 

  42. Peters DT, Henderson CA, Warren CR, et al. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells. Development. 2016;143(9):1475–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fitzgerald K, White S, Borodovsky A, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376(1):41–51.

    CAS  PubMed  Google Scholar 

  44. Ray KK, Landmesser U, Leiter LA, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376(15):1430–40.

    CAS  PubMed  Google Scholar 

  45. Ray KK, Stoekenbroek RM, Kallend D, et al. Effect of an siRNA therapeutic targeting PCSK9 on atherogenic lipoproteins. Circulation. 2018;138(13):1304–16.

    CAS  PubMed  Google Scholar 

  46. Ray KK, Stoekenbroek RM, Kallend D, et al. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiol. 2019;4(11):1067–75.

    PubMed  Google Scholar 

  47. Kastelein JJP. ORION-3. Presented at National Lipid Association (NLA) scientific sessions, Miami, May 2019. 2019.

  48. • Raal FJ, Kallend D, Ray KK, et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa1913805In this study inclisiran showed a significant lipid-lowering efficacy in patients at increased risk of early cardiovascular disease.

  49. • Ray KK, Wright RS, Kallend D, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa1912387This study shows that inclisiran provides substantial and persistent reductions in LDL-C levels with less frequent dosing.

  50. Raal F, Lepor N, Kallend D, Stoekenbroek R, Wijngaard P, Hovingh GK. Inclisiran durably lowers LDL-C and PCSK9 expression in subjects with homozygous familial hypercholesterolaemia: the ORION-2 pilot study. Atherosclerosis. 2019;28:e7.

    Google Scholar 

  51. Laina A, Gatsiou A, Georgiopoulos G, Stamatelopoulos K, Stellos K. RNA therapeutics in cardiovascular precision medicine. Front Physiol. 2018;9:953.

    PubMed  PubMed Central  Google Scholar 

  52. Frazier KS. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist's perspective. Toxicol Pathol. 2015;43(1):78–89.

    PubMed  Google Scholar 

  53. Landmesser U, Haghikia A, Leiter LA, et al. Effect of inclisiran, the siRNA against PCSK9, on platelets, immune cells and immunological biomarkers - a pre-specified analysis from ORION-1. Cardiovasc Res. 2020. https://doi.org/10.1093/cvr/cvaa077.

  54. Chandler PG, Buckle AM. Development and differentiation in monobodies based on the fibronectin rype 3 domain. Cells. 2020;9(3):610.

  55. Mitchell T, Chao G, Sitkoff D, et al. Pharmacologic profile of the Adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J Pharmacol Exp Ther. 2014;350(2):412–24.

    PubMed  Google Scholar 

  56. Stein EA, Kasichayanula S, Turner T, et al. LDL cholesterol reduction with BMS-962476, an Adnectin inhibitor of Pcsk9: results of a single ascending dose study. J Am Coll Cardiol. 2014;63(12):A1372.

    Google Scholar 

  57. Stein EA, Turner T, Biernat L, et al. Low density lipoprotein cholesterol reduction and safety with LIB003, an anti-proprotein convertase subtilisin/kexin type 9 fusion protein: results of a randomized, double-blind, placebo controlled, single-ascending dose study. J Am Coll Cardiol. 2019;73(9):1714.

    Google Scholar 

  58. Stein E, Toth P, Butcher MB, et al. Safety, tolerability and LDL-C reduction with a novel anti-PCSK9 recombinant fusion protein (LIB003): results of a randomized, double-blind, placebo-controlled, phase 2 study. Atherosclerosis. 2019;287:e7.

    Google Scholar 

  59. Stein EA, Turner T, Kereiakes DJ, Butcher B, Mangu P, Zhou R. Safety, tolerability and LDL-C reduction with LIB003 a novel anti-PCSK9 recombinant fusion protein: results of open-label extension phase 2B study. Circulation. 2019;140:A17222.

    Google Scholar 

  60. Pan Y, Zhou Y, Wu H, et al. A therapeutic peptide vaccine against PCSK9. Sci Rep. 2017;7(1):12534.

    PubMed  PubMed Central  Google Scholar 

  61. Kawakami R, Nozato Y, Nakagami H, et al. Development of vaccine for dyslipidemia targeted to a proprotein convertase subtilisin/kexin type 9 (PCSK9) epitope in mice. PLoS One. 2018;13(2):e0191895.

    PubMed  PubMed Central  Google Scholar 

  62. Landlinger C, Pouwer MG, Juno C, et al. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Heart J. 2017;38(32):2499–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Momtazi-Borojeni AA, Jaafari MR, Badiee A, Banach M, Sahebkar A. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 2019;17(1):223.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gustafsen C, Olsen D, Vilstrup J, et al. Heparan sulfate proteoglycans present PCSK9 to the LDL receptor. Nat Commun. 2017;8(1):503.

    PubMed  PubMed Central  Google Scholar 

  65. Tang CS, Zhang H, Cheung CY, et al. Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese. Nat Commun. 2015;6:10206.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Miyake Y, Kimura R, Kokubo Y, et al. Genetic variants in PCSK9 in the Japanese population: rare genetic variants in PCSK9 might collectively contribute to plasma LDL cholesterol levels in the general population. Atherosclerosis. 2008;196(1):29–36.

    CAS  PubMed  Google Scholar 

  67. Galvan AM, Chorba JS. Cell-associated heparin-like molecules modulate the ability of LDL to regulate PCSK9 uptake. J Lipid Res. 2019;60(1):71–84.

    CAS  PubMed  Google Scholar 

  68. Kastelein JJ. Targeting PCSK9: expanding knowledge and targeting new frontiers. Paris: ESC Congress; 2019.

    Google Scholar 

  69. Lintner NG, McClure KF, Petersen D, et al. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol. 2017;15(3):e2001882.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors are supported by Fondazione Cariplo [2016-0852 to GDN]; Telethon Foundation [grant numbers GGP19146 to GDN]; PRIN 2017H5F943 to ALC, and PRIN 2017K55HLC to GDN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe D. Norata.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

ALC reports grants from Sanofi, Regeneron, Merck, and Mediolanum; grants from SigmaTau, Menarini, Kowa, Recordati, and Eli Lilly; personal fees from Merck, Sanofi, Regeneron, AstraZeneca, Amgen, Sigma Tau, Recordati, Aegerion, Kowa, Menarini, Eli Lilly, and Genzyme, outside the submitted work. AP has nothing to disclose. GDN reports grants from Pfizer and Amgen and personal fees from Sanofi, Amgen, Alnylam, and Novartis, outside the submitted work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Nonstatin Drugs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catapano, A.L., Pirillo, A. & Norata, G.D. New Pharmacological Approaches to Target PCSK9. Curr Atheroscler Rep 22, 24 (2020). https://doi.org/10.1007/s11883-020-00847-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-020-00847-7

Keywords

Navigation