Skip to main content
Log in

Efficacy and Safety of Prostaglandin D2 Receptor 2 Antagonism with Fevipiprant for Patients with Asthma: a Systematic Review and Meta-analysis of Randomized Controlled Trials

  • Asthma (V Ortega, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Accumulating evidence has shown that prostaglandin D2 (PGD2)-chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) pathway plays an important role in promoting eosinophilic airway inflammation in asthma. We aimed to assess the efficacy and safety of CRTH2 antagonist fevipiprant in patients with persistent asthma compared with placebo.

Recent Findings

We identified eligible studies by searching PubMed, EMBASE, the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov. The study was registered as CRD 42020221714 (http://www.crd.york.ac.uk/PROSPERO). Ten randomized controlled trials with 7902 patients met our inclusion criteria. A statistically significant benefit of fevipiprant compared with placebo was shown in improving forced expiratory volume in 1 s (MD 0.05 L, 95% CI: 0.02 to 0.07; p < 0.0001), Asthma Control Questionnaire score (MD -0.10, 95% CI: -0.16 to -0.04; p = 0.001), and Asthma Quality of Life Questionnaire score (MD 0.08, 95% CI: 0.03 to 0.13; p = 0.003). Fevipiprant decreased number of patients with at least one asthma exacerbation requiring administration of systemic corticosteroids for 3 days or more (RR 0.86, 95% CI: 0.77 to 0.97; p = 0.01). Some benefits were a little more pronounced in the high eosinophil population (with an elevated blood eosinophil count or sputum eosinophil percentage) and in the 450 mg dose group. Fevipiprant was well tolerated with no safety issues compared with placebo.

Summary

Fevipiprant could safely improve asthma outcomes compared to placebo. However, most of the differences didn’t reach the minimal clinically important difference (MCID), thus the clinical benefits remained to be confirmed. 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACQ:

Asthma Control Questionnaire

AQLQ:

Asthma Quality of Life Questionnaire

AE:

Adverse events

ASM:

Airway smooth muscle

BAL:

Bronchoalveolar lavage

CENTRAL:

Cochrane Central Register of Controlled Trials

CIs:

Confidence intervals

CRTH2:

Chemoattractant receptor-homologous molecule expressed on type 2 helper T (Th2) cells

DP2 receptor:

PGD2 receptor 2

E.g.:

For example

\({FEV}_{1}\) :

ForcedFEV expiratory volume in 1 s

FeNO:

Fraction exhaled nitric oxide

GINA:

Global Initiative for Asthma

ICS:

Inhaled corticosteroids

IgE:

Immunoglobulin E

IL:

Interleukin

ILC2s:

Type 2 innate lymphoid (cells)

LABA:

Long-acting β agonists

MCID:

Minimal clinically important difference

MD:

Mean difference

\({\mathrm{PGD}}_{2}\) :

Prostaglandin D2

RCTs:

Randomized controlled trials

RR:

Risk ratio

SABA:

Short acting β2-agonist

SAE:

Serious adverse events

SD:

Standard deviation

Th2:

Type 2 helper T (cells)

Tc2:

Type 2 cytotoxic T (cells

References

  1. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716–25.

    Article  CAS  Google Scholar 

  2. Woodruff PG, Modrek B, Choy DF, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180(5):388–95.

    Article  CAS  Google Scholar 

  3. Krings JG, McGregor MC, Bacharier LB, Castro M. Biologics for severe asthma: treatment-specific effects are important in choosing a specific agent. J Allergy Clin Immunol Pract. 2019;7(5):1379–92.

    Article  Google Scholar 

  4. McGregor MC, Krings JG, Nair P, Castro M. Role of biologics in asthma. Am J Respir Crit Care Med. 2019;199(4):433–45.

    Article  CAS  Google Scholar 

  5. Pelaia G, Vatrella A, Maselli R. The potential of biologics for the treatment of asthma. Nat Rev Drug Discovery. 2012;11(12):958–72.

    Article  CAS  Google Scholar 

  6. Kostenis E, Ulven T. Emerging roles of DP and CRTH2 in allergic inflammation. Trends Mol Med. 2006;12(4):148–58.

    Article  CAS  Google Scholar 

  7. Xue L, Stoeger L, Marchi E, et al. Interaction of type 2 cytotoxic T lymphocytes and mast cell lipid mediators contributes to pathogenesis of eosinophilic asthma. Am J Respir Crit Care Med. 2017;195:A5301.

    Google Scholar 

  8. Xue L, Salimi M, Panse I, et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol. 2014;133(4):1184–94.

    Article  CAS  Google Scholar 

  9. Saunders R, Kaul H, Berair R, et al. DP(2) antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment. Sci Trans Med 2019;11(479):eaao6451.

  10. Palikhe NS, Laratta C, Nahirney D, et al. Elevated levels of circulating CD4(+) CRTh2(+) T cells characterize severe asthma. Clin Experiment Allergy : J British Soc Allergy Clinic Immunol. 2016;46(6):825–36.

    Article  CAS  Google Scholar 

  11. Liu MC, Hubbard WC, Proud D, et al. Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics. Cellular, mediator, and permeability changes. Am Rev Respir Dis 1991;144(1):51–8.

  12. Balzar S, Fajt ML, Comhair SA, et al. Mast cell phenotype, location, and activation in severe asthma. Data from the Severe Asthma Research Program. Am J Respir Critic Care med 2011;183(3):299–309.

  13. Fajt ML, Gelhaus SL, Freeman B, et al. Prostaglandin D2 pathway upregulation: relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol 2013;131(6):1504–1512.

  14. Sykes DA, Bradley ME, Riddy DM, et al. Fevipiprant (QAW039), a slowly dissociating CRTh2 antagonist with the potential for improved clinical efficacy. Mol Pharmacol. 2016;89(5):593–605.

    Article  CAS  Google Scholar 

  15. Hardman C, Chen W, Luo J, et al. Fevipiprant, a selective prostaglandin D(2) receptor 2 antagonist, inhibits human group 2 innate lymphoid cell aggregation and function. J Allergy Clin Immunol. 2019;143(6):2329–33.

    Article  CAS  Google Scholar 

  16. Gonem S, Berair R, Singapuri A, et al. Fevipiprant, a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a single-centre, randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir Med. 2016;4(9):699–707.

    Article  CAS  Google Scholar 

  17. Bateman ED, Guerreros AG, Brockhaus F, et al. Fevipiprant, an oral prostaglandin DP(2) receptor (CRTh2) antagonist, in allergic asthma uncontrolled on low-dose inhaled corticosteroids. Eur Respir J. 2017;50(2):1700670.

    Article  Google Scholar 

  18. Erpenbeck VJ, Popov TA, Miller D, et al. The oral CRTh2 antagonist QAW039 (fevipiprant): A phase II study in uncontrolled allergic asthma. Pulm Pharmacol Ther 2016;39:54–63.

  19. https://clinicaltrials.gov/show/NCT03226392.[cited 2021 Feb 28]. 

  20. https://clinicaltrials.gov/show/NCT03215758.[cited 2021 Feb 28]. 

  21. Brightling CE, Gaga M, Inoue H, et al. Effectiveness of fevipiprant in reducing exacerbations in patients with severe asthma (LUSTER-1 and LUSTER-2): two phase 3 randomised controlled trials. The Lancet Respir Med 2020.

  22. Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ (Clin Res ed) 2015;350:g7647.

  23. Cochrane. Handbook for Systematic Reviews of Interventions. Version 5.2.0 2017 http://handbook.cochrane.org/.Cochrane.

  24. https://clinicaltrials.gov/show/NCT03629249.[cited 2021 Feb 28]. 

  25. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Clin Res ed) 2011;343:d5928.

  26. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed). 2003;327(7414):557–60.

    Article  Google Scholar 

  27. https://clinicaltrials.gov/show/NCT01836471.[cited 2021 Feb 28]. 

  28. https://clinicaltrials.gov/show/NCT02555683.[cited 2021 Feb 28]. 

  29. https://clinicaltrials.gov/show/NCT03052517.[cited 2021 Feb 28]. 

  30. https://clinicaltrials.gov/show/NCT02563067.[cited 2021 Feb 28]. 

  31. Rabe KF, Nair P, Brusselle G, et al. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N Engl J Med. 2018;378(26):2475–85.

    Article  CAS  Google Scholar 

  32. Castro M, Corren J, Pavord ID, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med. 2018;378(26):2486–96.

    Article  CAS  Google Scholar 

  33. Wenzel S, Castro M, Corren J, et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet (London, England). 2016;388(10039):31–44.

    Article  CAS  Google Scholar 

  34. Normansell R, Walker S, Milan SJ, Walters EH, Nair P. Omalizumab for asthma in adults and children. Cochrane Data System Rev 2014;(1):Cd003559.

  35. Farne HA, Wilson A, Powell C, Bax L, Milan SJ. Anti-IL5 therapies for asthma. Cochrane Data System Rev 2017;9(9):Cd010834.

  36. Juniper EF, Svensson K, Mörk AC, Ståhl E. Measurement properties and interpretation of three shortened versions of the asthma control questionnaire. Respir Med. 2005;99(5):553–8.

    Article  Google Scholar 

  37. Juniper EF, Guyatt GH, Willan A, Griffith LE. Determining a minimal important change in a disease-specific Quality of Life Questionnaire. J Clin Epidemiol. 1994;47(1):81–7.

    Article  CAS  Google Scholar 

  38. Santanello NC, Zhang J, Seidenberg B, Reiss TF, Barber BL. What are minimal important changes for asthma measures in a clinical trial? Eur Respir J. 1999;14(1):23–7.

    Article  CAS  Google Scholar 

  39. White C, Wright A, Brightling C. Fevipiprant in the treatment of asthma. Expert Opin Investig Drugs. 2018;27(2):199–207.

    Article  CAS  Google Scholar 

  40. Diamant Z, Sidharta PN, Singh D, et al. Setipiprant, a selective CRTH2 antagonist, reduces allergen-induced airway responses in allergic asthmatics. Clin Experiment Allergy : J British Soc Allergy Clin Immunol. 2014;44(8):1044–52.

    Article  CAS  Google Scholar 

  41. Busse WW, Wenzel SE, Meltzer EO, et al. Safety and efficacy of the prostaglandin D2 receptor antagonist AMG 853 in asthmatic patients. J Allergy Clin Immunol. 2013;131(2):339–45.

    Article  CAS  Google Scholar 

  42. Wenzel SE, Hopkins R, Saunders M, et al. Safety and efficacy of ARRY-502, a potent, selective, oral CRTh2 antagonist, in patients with mild to moderate Th2-driven asthma. J Allergy Clin Immunol 2014;133(2): AB4-AB.

  43. Kuna P, Bjermer L, Tornling G. Two phase II randomized trials on the CRTh2 antagonist AZD1981 in adults with asthma. Drug Des Dev Ther. 2016;10:2759–70.

    Article  CAS  Google Scholar 

  44. Hall IP, Fowler AV, Gupta A, et al. Efficacy of BI 671800, an oral CRTH2 antagonist, in poorly controlled asthma as sole controller and in the presence of inhaled corticosteroid treatment. Pulm Pharmacol Ther. 2015;32:37–44.

    Article  CAS  Google Scholar 

  45. Pettipher R, Hunter MG, Perkins CM, et al. Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459. Allergy. 2014;69(9):1223–32.

    Article  CAS  Google Scholar 

  46. Barnes N, Pavord I, Chuchalin A, et al. A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin Experiment Allergy : J British Soc Allergy Clin Immunol. 2012;42(1):38–48.

    Article  CAS  Google Scholar 

  47. Ortega H, Fitzgerald M, Raghupathi K, et al. A phase 2 study to evaluate the safety, efficacy and pharmacokinetics of DP2 antagonist GB001 and to explore biomarkers of airway inflammation in mild-to-moderate asthma. Clin Experiment Allergy : J British Soc Allergy Clin Immunol. 2020;50(2):189–97.

    Article  CAS  Google Scholar 

  48. Yang J, Luo J, Yang L, et al. Efficacy and safety of antagonists for chemoattractant receptor-homologous molecule expressed on Th2 cells in adult patients with asthma: a meta-analysis and systematic review. Respir Res. 2018;19(1):217.

    Article  CAS  Google Scholar 

  49. Carstensen S, Müller M, Erpenbeck V, Kazani S, Sandham D. Fevipiprant inhibits eosinophil activation induced by multiple metabolites of prostaglandin D2. Euro Respir J 2019;54(Supplement 63): PA4391.

  50. Shamri R, Erpenbeck VJ, Dubois G, Sandham D, Levi-schaffer F. Fevipiprant, a potent selective antagonist of the prostaglandin D2 receptor 2, modulates the allergic effector unit via inhibition of eosinophil migration towards mast cells. Am J Respir Critic Care Med 2018;197(MeetingAbstracts).

  51. Kazani S, Hasler F, Jaeger P, Maurer C, Sandham D, Roehn T. Fevipiprant is superior to montelukast in suppressing type 2 cytokine production from mast cell stimulated human Th2 cells. Euro Respir J 2019; 54(Supplement 63): OA3808.

  52. Chen W, Borst R, Luo J, et al. Fevipiprant antagonises prostaglandin D2-induced activation of type-2 CD8 T cells (Tc2). Euro Respir J 2019;54.

  53. Xue L, Hardman C, Chen W, et al. Fevipiprant, a selective prostaglandin d2 receptor 2 antagonist, potently inhibits chemotaxis and cytokine production by group 2 innate lymphoid cells. Am J Respir Critic Care Med 2018;197(MeetingAbstracts).

  54. Gervais FG, Sawyer N, Stocco R, et al. Pharmacological characterization of MK-7246, a potent and selective CRTH2 (chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells) antagonist. Mol Pharmacol. 2011;79(1):69–76.

    Article  CAS  Google Scholar 

  55. Bain G, Lorrain DS, Stebbins KJ, et al. Pharmacology of AM211, a potent and selective prostaglandin D2 receptor type 2 antagonist that is active in animal models of allergic inflammation. J Pharmacol Exp Ther. 2011;338(1):290–301.

    Article  CAS  Google Scholar 

  56. Stebbins KJ, Broadhead AR, Correa LD, et al. Therapeutic efficacy of AM156, a novel prostanoid DP2 receptor antagonist, in murine models of allergic rhinitis and house dust mite-induced pulmonary inflammation. Eur J Pharmacol. 2010;638(1–3):142–9.

    Article  CAS  Google Scholar 

  57. Lukacs NW, Berlin AA, Franz-Bacon K, et al. CRTH2 antagonism significantly ameliorates airway hyperreactivity and downregulates inflammation-induced genes in a mouse model of airway inflammation. Am J Physiol Lung Cell Mol Physiol. 2008;295(5):L767–79.

    Article  CAS  Google Scholar 

  58. Uller L, Mathiesen JM, Alenmyr L, et al. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation. Respir Res. 2007;8(1):16.

    Article  Google Scholar 

  59. Sandham D, Asano K, Barker L, et al. Fevipiprant, a potent selective prostaglandin D2 receptor 2 (DP2) antagonist, dose-dependently inhibits pulmonary inflammation in a mouse model of asthma. Am J Respir Critic Care Med 2018; 197(MeetingAbstracts).

  60. GB001 Phase 2 Clinical Trial Topline Results. [cited 2021 Feb 28]. Available from: https://ir.gossamerbio.com/node/7301/html. 2020.

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 81770035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuntao Liu.

Ethics declarations

Conflict of Interest

No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication. All the authors listed have approved the manuscript that is enclosed.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

I would like to declare on behalf of my co-authors that the work described has not been published previously and not under consideration for publication elsewhere, in whole or in part.

This article is part of the Topical Collection on Asthma

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1417 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Guo, X., Liu, T. et al. Efficacy and Safety of Prostaglandin D2 Receptor 2 Antagonism with Fevipiprant for Patients with Asthma: a Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr Allergy Asthma Rep 21, 39 (2021). https://doi.org/10.1007/s11882-021-01017-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11882-021-01017-8

Keywords

Navigation