Skip to main content
Log in

Spatial selective attention and asynchrony of cognitive systems in adult dyslexic readers: an ERPs and behavioral study

  • Published:
Annals of Dyslexia Aims and scope Submit manuscript

Abstract

The aim of this study was to gain additional knowledge about the asynchrony phenomenon in developmental dyslexia, especially when spatial selective attention is manipulated. Adults with developmental dyslexia and non-impaired readers underwent two experimental tasks, one including alphabetic stimuli (pre-lexical consonant–vowel syllables) and the other containing non-alphabetic stimuli (pictures and sounds of animals). Participants were instructed to attend to the right or left hemifields and to respond to all stimuli on that hemifield. Behavioral parameters and event-related potentials were recorded. The main finding was that the dyslexic readers demonstrated asynchrony between the auditory and visual modalities when alphabetic stimuli were presented on the right hemifield. These results suggest that intact reading is linked to a synchronized auditory and visual speed of processing even when spatial selective attention is manipulated. The findings of the current study are discussed in terms of asynchrony between modalities as a neurocognitive marker in developmental dyslexia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asbjørnsen, A. E., & Bryden, M. P. (1998). Auditory attentional shifts in reading-disabled students: Quantification of attentional effectiveness by the attentional shift index. Neuropsychologia, 36, 143–148.

    Article  Google Scholar 

  • Boets, B., Op de Beeck, H., Vandermosten, M., Scott, S. K., Gillebert, C. R., Mantini, D., Bulthé, J., Sunaert, S., Wouters, J., & Ghesquière, P. (2013). Intact but less accessible phonetic representations in adults with dyslexia. Science, 342, 1251–1254.

    Article  Google Scholar 

  • Breznitz, Z. (1997a). Naming test in Hebrew based on Denckla & Rudel, 1976. Unpublished test. Israel: University of Haifa.

    Google Scholar 

  • Breznitz, Z. (1997b). Orthographic ability—Parsing test. Unpublished test. Haifa: University of Haifa.

    Google Scholar 

  • Breznitz, Z. (2001). The determinants of reading fluency: A comparison of dyslexic and average readers. In M. Wolf (Ed.), Dyslexia, fluency and the brain (pp. 245–276). Cambridge: York Press.

    Google Scholar 

  • Breznitz, Z. (2002). Asynchrony of visual-orthographic and auditory-phonological word recognition processes: An underlying factor in dyslexia. Reading and Writing, 15, 15–42.

    Article  Google Scholar 

  • Breznitz, Z. (2003). Speed of phonological and orthographic processing as factors in dyslexia: Electrophysiological evidence. Genetic, Social, and General Psychology Monographs, 129(2), 183-206.

  • Breznitz, Z. (2006). Reading fluency: Synchronization of processes. Mahwah: Lawrence Erlbaum and Associates.

    Google Scholar 

  • Breznitz, Z., & Meyler, A. (2003). Speed of lower-level auditory and visual processing as a basic factor in dyslexia: Electrophysiological evidence. Brain and Language, 85, 166–184.

    Article  Google Scholar 

  • Breznitz, Z., & Misra, M. (2003). Speed of processing of the visual-orthographic and auditory-phonological systems in adult dyslexics: The contribution of “asynchrony” to word recognition deficits. Brain and Language, 85, 486–502.

    Article  Google Scholar 

  • Brunswick, N., & Rippon, G. (1994). Auditory event-related potentials, dichotic listening performance and handedness as indices of lateralization in dyslexic and normal readers. International Journal of Psychophysiology, 18, 265–275.

    Article  Google Scholar 

  • Casco, C., Tressoldi, P. E., & Dellantonio, A. (1998). Visual selective attention and reading efficiency are related in children. Cortex, 34, 531–546.

    Article  Google Scholar 

  • Denkla, M. B., & Rudel, R. G. (1976). Naming of objects by dyslexic and other learning disabled children. Brain and Language, 3, 1–15.

    Article  Google Scholar 

  • Fabiani, M., Kazmerski, V. A., Cycowicz, Y. M., & Friedman, D. (1996). Naming norms for brief environmental sounds: Effects of age and dementia. Psychophysiology, 33, 462–475.

    Article  Google Scholar 

  • Facoetti, A., Corradi, N., Ruffino, M., Gori, S., & Zorzi, M. (2010). Visual spatial attention and speech segmentation are both impaired in preschoolers at familial risk for developmental dyslexia. Dyslexia, 16, 226–239.

    Article  Google Scholar 

  • Facoetti, A., Lorusso, M. L., Cattaneo, C., Galli, R., & Molteni, M. (2005). Visual and auditory attentional capture are both sluggish in children with developmental dyslexia. Acta Neurobiologiae Experimentalis, 65, 61–72.

    Google Scholar 

  • Facoetti, A., Paganoni, P., & Lorusso, M. L. (2000). The spatial distribution of visual attention in developmental dyslexia. Experimental Brain Research, 132, 531–538.

    Article  Google Scholar 

  • Facoetti, A., Turatto, M., Lorusso, M. L., & Mascetti, G. G. (2001). Orienting of visual attention in dyslexia: Evidence of asymmetric hemispheric control of attention. Experimental Brain Research, 138, 46–53.

    Article  Google Scholar 

  • Facoetti, A., Zorzi, M., Cestnick, L., Lorusso, M., Molteni, M., Paganoni, P., Umiltà, C., & Mascetti, G. (2006). The relationship between visuo-spatial attention and nonword reading in developmental dyslexia. Cognitive Neuropsychology, 23, 841–855.

    Article  Google Scholar 

  • Fan, J., McCandliss, B. D., Sommer, T., Raz, M., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347.

    Article  Google Scholar 

  • Gratton, G., Coles, M.G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468–484.

  • Giard, M. H., & Peronnet, F. (1999). Auditory–visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11, 473–490.

    Article  Google Scholar 

  • Hairston, W. D., Burdette, J. H., Flowers, D. L., Wood, F. B., & Wallace, M. T. (2005). Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Experimental Brain Research, 166, 474–480.

    Article  Google Scholar 

  • Heiervang, E., & Hugdahl, K. (2003). Impaired visual attention in children with dyslexia. Journal of Learning Disabilities, 36, 68–73.

    Article  Google Scholar 

  • Heim, S., Eulitz, C., & Elbert, T. (2003). Altered hemispheric asymmetry of auditory N100m in adults with developmental dyslexia. Neuroreport, 14, 501–504.

    Article  Google Scholar 

  • Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. Science, 182, 177–180.

    Article  Google Scholar 

  • Hink, R. F., Hillyard, S. A., & Benson, P. J. (1978). Event-related brain potentials and selective auditory attention to acoustic and phonetic cues. Biological Psychology, 6, 1–16.

    Article  Google Scholar 

  • Hink, R. F., van Voorhis, S. T., Hillyard, S. A., & Smith, T. S. (1977). The division of attention and the human auditory evoked potential. Neuropsychologia, 15, 597–605.

    Article  Google Scholar 

  • Hugdahl, K. (2000). Lateralization of cognitive processes in the brain. Acta Psychologica, 105, 211–235.

    Article  Google Scholar 

  • Illingworth, S., & Bishop, D. V. M. (2009). Atypical cerebral lateralisation in adults with compensated developmental dyslexia demonstrated using functional transcranial Doppler ultrasound. Brain and Language, 111, 61–65.

    Article  Google Scholar 

  • Kimura, D. (1967). Functional asymmetry of the brain in dichotic listening. Cortex, 3, 163–168.

    Article  Google Scholar 

  • Kinsbourne, M. (1970). The cerebral basis of lateral asymmetries in attention. Acta Psychologica, 33, 193–201.

    Article  Google Scholar 

  • Kinsbourne, M. (1973). Th control of attention by interaction between the cerebral hemispheres. In S. Kornblum (Ed.), Attention and performance IV (pp. 239–255). New York: Academic Press.

    Google Scholar 

  • Kinsbourne, M. (1975). The mechanism of hemispheric control of the lateral gradient of attention. In P. M. A. Rabbitt & S. Dornic (Eds.), Attention and performance V (pp. 81–97). London: Academic Press.

    Google Scholar 

  • LaBerge, D., & Brown, V. (1989). Theory of attentional operations in shape identification. Psychological Review, 96(1), 101–124.

    Article  Google Scholar 

  • LaBerge, D., Brown, V., Carter, M., Bash, D., & Hartley, A. (1991). Reducing the effects of adjacent distractors by narrowing attention. Journal of Experimental Psychology. Human Perception and Performance, 17, 65–76.

    Article  Google Scholar 

  • Luck, S. J. (1995). Multiple mechanisms of visual-spatial attention: Recent evidence from human electrophysiology. Behavioural Brain Research, 71, 113–123.

    Article  Google Scholar 

  • Luck, S. J., & Girelli, M. (1998). Electrophysiological approaches to the study of selective attention in the human brain. In R. Parasuraman (Ed.), The attentive brain (pp. 71–94). Cambridge: MIT Press.

    Google Scholar 

  • Mangun, G. R., & Hillyard, S. A. (1990). Electrophysiological studies of visual selective attention in humans. In A. B. Scheibel & A. F. Wechsler (Eds.), UCLA forum in medical sciences, no. 29. Neurobiology of higher cognitive function (pp. 271–295). New York: Guilford Press.

    Google Scholar 

  • Marendaz, C., Valdois, S., & Walch, J. P. (1996). Dyslexie de’veloppementale et attention visuo-spatial. L_Anne’e Psychologique, 96, 193–224.

    Article  Google Scholar 

  • Menashe, S. (2017). Selective attention and the “asynchrony theory” in native Hebrew-speaking adult dyslexics: Behavioral and ERPs measures. Journal of Integrative Neuroscience, 16(3), 1–17.

    Google Scholar 

  • Parasuraman, R. (1998). The attentive brain: Issues and prospects. In R. Parasuraman (Ed.), The attentive brain (pp. 3–15). Cambridge: MIT Press.

    Google Scholar 

  • Poghosyan, V., & Ioannides, A. A. (2008). Attention modulates earliest responses in the primary auditory and visual cortices. Neuron, 58, 802–813.

    Article  Google Scholar 

  • Posner, M.I., Snyder, C.R., & Davidson, B.J. (1980). Attention and the detection ofsignals. Journal of Experimental Psychology, 109(2), 160-174.Stelmach, L.B., & Herdman, C.M. (1991). Directed attention and perception of temporal order. Journal of Experimental Psychology: Human Perception and Performance, 17, 539–550.

  • Ramus, F. (2003). Developmental dyslexia: Specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13, 212–218.

    Article  Google Scholar 

  • Raven, J. C. (1960). Guide to the standard progressive matrices. London: H.K. Lewis.

    Google Scholar 

  • Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27, 611–647.

    Article  Google Scholar 

  • Rosenzweig, M.R. (1951). Representations of the two ears at the auditory cortex. American Journal of Physiology, 167, 147–214.

  • Rumsey, J. M., Andreason, P., Zametkin, A. J., Aquino, T., King, A. C., Hamburger, S. D., Pikus, A., Rapoport, J. L., & Cohen, R. M. (1992). Failure to activate the left temporoparietal cortex in dyslexia: An oxygen 15 positron emission tomographic study. Archives of Neurology, 49, 527–534.

    Article  Google Scholar 

  • Senkowski, D., Talsma, D., Herrmann, C. S., & Woldorff, M. G. (2005). Multisensory processing and oscillatory gamma responses: Effects of spatial selective attention. Experimental Brain Research, 166, 411–426.

    Article  Google Scholar 

  • Shatil, E. (1997a). One-minute test for words. Unpublished test. Haifa: University of Haifa.

    Google Scholar 

  • Shatil, E. (1997b). One-minute test for pseudowords. Unpublished test. Haifa: University of Haifa.

    Google Scholar 

  • Shatil, E. (2001). Phonological test battery. Unpublished tests. Haifa: University of Haifa.

    Google Scholar 

  • Shaul, S. (2013). Asynchrony of cerebral systems activated during word recognition: Comparison of dyslexic and typical readers. Journal of Integrative Neuroscience, 12, 259–283.

    Article  Google Scholar 

  • Shaywitz, S. E., & Shaywitz, B. A. (2005). Dyslexia (specific reading disability). Biological Psychiatry, 57, 1301–1309.

    Article  Google Scholar 

  • Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6, 174–215.

    Google Scholar 

  • Stanovich, K. E. (1994). Does dyslexia exist? Journal of Child Psychology & Psychiatry, 35, 579–595.

    Article  Google Scholar 

  • Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge: MIT Press.

    Google Scholar 

  • Stein, J. (2001). The magnocellular theory of developmental dyslexia. Dyslexia, 7, 12–36.

    Article  Google Scholar 

  • Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9, 182–198.

    Article  Google Scholar 

  • Talsma, D., Doty, T. J., & Woldorff, M. G. (2007). Selective attention and audiovisual integration: Is attending to both modalities a prerequisite for early integration? Cerebral Cortex, 17, 691–701.

    Google Scholar 

  • Talsma, D., & Woldorff, M. G. (2005). Selective attention and multisensory integration: Multiple phases of effects on the evoked brain activity. Journal of Cognitive Neuroscience, 17, 1098–1114.

    Article  Google Scholar 

  • The Center for Psychometric Tests. (1994). Comprehension test, Israeli psychometric scholastic aptitude test. Tel Aviv, Israel.

  • Wechsler, D. (1981). Wechsler adult intelligence scale—revised. New York: Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (1994). Wechsler intelligence scale for adults—III. Cleveland: Psychological Corp.

    Google Scholar 

  • Wijers, A. A., Mulder, G., Gunter, T. C., & Smid, H. G. O. M. (1996). Brain potential analysis of selective attention. In O. Neumann & A. F. Sanders (Eds.), Handbook of perception and action, attention (pp. 333–387). London: Academic Press.

    Google Scholar 

  • Woldorff, M. G., Gallen, C. C., Hampson, S. A., Hillyard, S. A., Pantev, C., Sobel, D., & Bloom, F. E. (1993). Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proceedings of the National Academy of Sciences, 90, 8722–8726.

    Article  Google Scholar 

  • Woldorff, M. G., & Hillyard, S. A. (1991). Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalography and Clinical Neurophysiology, 79, 170–191.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shay Menashe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menashe, S. Spatial selective attention and asynchrony of cognitive systems in adult dyslexic readers: an ERPs and behavioral study. Ann. of Dyslexia 68, 145–164 (2018). https://doi.org/10.1007/s11881-018-0160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11881-018-0160-3

Keywords

Navigation