Skip to main content
Log in

Seasonal variation, source apportionment, and cancer risk assessment of PM2.5-bound phthalates: a case study in Taiyuan, China

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Taiyuan in the Shanxi Province of China has experienced significant air pollution from fine particulate matter (PM2.5) in the past years. Phthalate esters (PAEs), which are common semi-volatile chemical molecules in PM2.5 and that humans can breathe into their bodies, can have serious health consequences. This study looked at the levels, composition, sources, and incremental lifetime lung cancer risk factors for PM2.5-bound PAEs in Taiyuan. A QuEChERS extraction technique and gas chromatography-tandem mass spectrometry were used to evaluate 16 PAE compounds. All samples contained PAEs, and the overall PAE concentration ranged from 114 to 864 ng/m3. The most often detected compound was bis(2-ethylhexyl)phthalate (DEHP), and summer PAE concentrations were substantially greater than winter ones. A positive matrix factorization model showed that the main sources of PAE release were the indoor environment, industry source, automobile-related source, and construction source. The places within 300 km of Taiyuan were thought to have a significant impact on PAEs, according to the analysis of the prospective source contribution function. The calculated incremental lifetime lung cancer risk of DEHP exposure was 0.76 cases per million people. More of the risk of lung cancer has been attributed to indoor air pollution (53.2%). These findings will help us understand the features of PAE contamination and offer a solid scientific foundation for minimizing PAE pollution in the Loess Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdel daiem MM, Rivera-Utrilla J, Ocampo-Pérez R, Méndez-Díaz JD, Sánchez-Polo M (2012) Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies-a review. J Environ Manage 109:164–178

    Article  CAS  PubMed  Google Scholar 

  • Abtahi M, Dobaradaran S, Torabbeigi M, Jorfi S, Gholamnia R, Koolivand A, Darabi H, Kavousi A, Saeedi R (2019) Health risk of phthalates in water environment: occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in Tehran, Iran. Environ Res 173:469–479

    Article  CAS  PubMed  Google Scholar 

  • Akhbarizadeh R, Dobaradaran S, Schmidt TC, Nabipour I, Spitz J (2020) Worldwide bottled water occurrence of emerging contaminants: a review of the recent scientific literature. J Hazard Mater 392:122271

    Article  CAS  PubMed  Google Scholar 

  • Al-Natsheh M, Alawi M, Fayyad M, Tarawneh I (2015) Simultaneous GC-MS determination of eight phthalates in total and migrated portions of plasticized polymeric toys and childcare articles. J Chromatogr B 985:103–109

    Article  CAS  Google Scholar 

  • Anastassiades M, Lehotay S, Stajnbaher D, Schenck F (2003) Fast and easy multi-residue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86(2):412–431

    Article  CAS  PubMed  Google Scholar 

  • Arfaeinia H, Afazlzadeh M, Ataghizadeh F, Asaeedi R, Aspitz J, Adobaradaran S (2019) Phthalate acid esters (PAEs) accumulation in coastal sediments from regions with different land use configuration along the Persian Gulf. Ecotoxicol Environ Saf 169:496–506

    Article  CAS  PubMed  Google Scholar 

  • Barbas B, de la Torre A, Sanz P, Navarro I, Artíñano B, Martínez MA (2018) Gas/particle partitioning and particle size distribution of PCDD/Fs and PCBs in urban ambient air. Sci Total Environ 624:170–179

    Article  ADS  CAS  PubMed  Google Scholar 

  • Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA (2017) Phthalates impact human health: epidemiological evidences and plausible mechanism of action. J Hazard Mater 340:360–383

    Article  CAS  PubMed  Google Scholar 

  • Boberg J, Christiansen S, Axelstad M, Kledal TS, Vinggaard AM, Dalgaard M, Nellemann C, Hass U (2011) Reproductive and behavioral effects of diisononyl phthalate (DINP) in perinatally exposed rats. Reprod Toxicol 31:200–209

    Article  CAS  PubMed  Google Scholar 

  • Clausen PA, Liu Z, Kofoed-Sørensen V, Little J, Wolkoff P (2012) Influence of temperature on the emission of di-(2-ethylhexyl)phthalate (DEHP) from PVC flooring in the emission cell FLEC. Environ Sci Technol 46:3217–3224

    Article  Google Scholar 

  • Corbin JC, Mensah AA, Pieber SM, Orasche J, Michalke B, Zanatta M, Czech H, Massabo D, De Mongeot FB, Mennucci C, El Haddad I, Kumar NK, Stengel B, Huang Y, Zimmermann R, Prevot ASH, Gysel M (2018) Trace metals in soot and PM2.5 from heavy-fuel-oil combustion in a marine engine. Environ Sci Technol 52:6714–6722

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousins IT, Mackay D (2001) Gas-particle partitioning of organic compounds and its interpretation using relative solubilities. Environ Sci Technol 35:643–647

    Article  ADS  CAS  PubMed  Google Scholar 

  • De-la-Torre GE, Dioses-Salinas DC, Dobaradaran S, Spitz J, Nabipour I, Keshtkar M, Akhbarizadeh R, Tangestani M, Abedi D, Javanfekr F (2022) Release of phthalate esters (PAEs) and microplastics (MPs) from face masks and gloves during the COVID-19 pandemic. Environ Res 215:114337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobaradaran S, Akhbarizadeh R, Mohammadi MJ, Izadi A, Keshtkar M, Tangestani M, Moazzen M, Shariatifar N, Mahmoodi M (2020) Determination of phthalates in bottled milk by a modified nano adsorbent: presence, effects of fat and storage time, and implications for human health. Microchem J 159:105516

    Article  CAS  Google Scholar 

  • Dong W, Sun B, Sun J, Zheng F, Sun X, Huang M, Li H (2017) Matrix effects in detection of phthalate esters from wheat by a modified QuEChERS method with GC/MS. Food Anal Methods 10:3166–3180

    Article  Google Scholar 

  • Fan JC, Ren R, Jin Q, He HL, Wang ST (2019) Detection of 20 phthalate esters in breast milk by GC-MS/MS using QuEChERS extraction method. Food Addit Contam: Part A 36:1551–1558

    Article  CAS  Google Scholar 

  • Geiss O, Tirendi S, Barrero-Moreno J, Kotzias D (2009) Investigation of volatile organic compounds and phthalates present in the cabin air of used private cars. Environ Int 35:1188–1195

    Article  CAS  PubMed  Google Scholar 

  • Geravandi S, Sicard P, Khaniabadi YO, Marco AD, Ghomeishi A, Goudarzi G, Mahboubi M, Yari AR, Dobaradaran S, Hassani G, Mohammadi MJ, Sadeghi S (2017) A comparative study of hospital admissions for respiratory diseases during normal and dusty days in Iran. Environ Sci Pollut Res 24:18152–18159

    Article  CAS  Google Scholar 

  • Ghosh S, Sahu M (2022) Phthalate pollution and remediation strategies: A review. J Hazard Mater 6:100065

    CAS  Google Scholar 

  • Goudarzi G, Geravandi S, Idani E, Hosseini SA, Baneshi MM, Yari AR, Vosoughi M, Dobaradaran S, Shirali S, Marzooni MB, Ghomeishi A, Alavi N, Alavi SS, Mohammadi MJ (2016) An evaluation of hospital admission respiratory disease attributed to sulfur dioxide ambient concentration in Ahvaz from 2011 through 2013. Environ Sci Pollut Res 23:22001–22007

    Article  CAS  Google Scholar 

  • Goudarzi G, Alavi N, Geravandi S, Idani E, Behrooz HRA, Babaei AA, Alamdari FA, Dobaradaran S, Farhadi M, Mohammadi MJ (2018) Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran. Int J Biometeorol 62:1075–1083

    Article  PubMed  Google Scholar 

  • Goudarzi G, Baboli Z, Moslemnia M, Tobekhak M, Birgani YT, Neisi A, Ghanemi K, Babaei AA, Hashemzadeh B, Angali KA, Dobaradaran S, Ramezani Z, Hassanvand MS, Rad HD, Kayedi N (2021) Assessment of incremental lifetime cancer risks of ambient air PM10-bound PAHs in oil-rich cities of Iran. J Environ Health Sci Eng 19:319–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Kannan K (2011) Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environ Sci Technol 45:3788–3794

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gupta S, Gadi R (2018) Temporal variation of Phthalic Acid Esters (PAEs) in ambient atmosphere of Delhi. Bull Environ Contam Toxicol 101:153–159

    Article  CAS  PubMed  Google Scholar 

  • Hajiouni S, Mohammadi A, Ramavandi B, Arfaeinia H, De-la-Torre GE, Tekle-Röttering A, Dobaradaran S (2022) Occurrence of microplastics and phthalate esters in urban runoff: a focus on the Persian Gulf coastline. Sci Total Environ 806:150559

    Article  ADS  CAS  PubMed  Google Scholar 

  • Han X, Zhuang Y (2021) PM2.5 induces autophagy-mediated cell apoptosis via PI3K/AKT/mTOR signaling pathway in mice bronchial epithelium cells. Exp Ther Med 21:1–7

    CAS  PubMed  Google Scholar 

  • Hassan MH, Mostafa SA, Mustapha A, Saringat MZ, Al-rimy BAS, Saeed F, Eljialy AEM, Jubair MA (2022) A new collaborative multi-agent Monte Carlo Simulation model for spatial correlation of air pollution global risk assessment. Sustainability 14:1–21

    Article  CAS  Google Scholar 

  • He J, Gong S, Yu Y, Yu L, Wu L, Mao H, Song C, Zhao S, Liu H, Li X, Li R (2017) Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ Pollut 223:484–496

    Article  CAS  PubMed  Google Scholar 

  • Huang YQ, Zeng Y, Wang T, Chen SJ, Guan YF, Mai BX (2022) PM2.5-bound phthalates and phthalate substitutes in a megacity of southern China: spatioseasonal variations, source apportionment, and risk assessment. Environ Sci Pollut Res 29:37737–37747

    Article  CAS  Google Scholar 

  • Idani E, Geravandi S, Akhzari M, Goudarzi G, Alavi N, Yari AR, Mehrpour M, Khavasi M, Bahmaei J, Bostan H, Dobaradaran S, Salmanzadeh S, Mohammadi MJ (2020) Characteristics, sources, and health risks of atmospheric PM10-bound heavy metals in a populated Middle Eastern city. Toxin Rev 39:266–274

    Article  Google Scholar 

  • Kassomenos P, Vardoulakis S, Borge R, Lumbreras J, Papaloukas C, Karakitsios S (2010) Comparison of statistical clustering techniques for the classification of modelled atmospheric trajectories. Theoret Appl Climatol 102:1–12

    Article  ADS  Google Scholar 

  • Kong S, Ji Y, Liu L, Chen L, Zhao X, Wang J, Bai Z, Sun Z (2013) Spatial and temporal variation of phthalic acid esters (PAEs) in atmospheric PM10 and PM2.5 and the influence of ambient temperature in Tianjin. China Atmos Environ 74:199–208

    Article  ADS  CAS  Google Scholar 

  • Koniecki D, Wang R, Moody RP, Zhu J (2011) Phthalates in cosmetic and personal care products: concentrations and possible dermal exposure. Environ Res 111:329–336

    Article  CAS  PubMed  Google Scholar 

  • Lee YM, Lee JE, Choe W, Kim T, Lee JY, Kho Y, Choi K, Zoh KD (2019) Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea. Environ Int 126:635–643

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Kim S, Bastiaensen M, Malarvannan G, Poma G, Casero NC, Gys C, Covaci A, Lee S, Lim JE, Mok S, Moon HB, Choi G, Choi K (2020) Exposure to organophosphate esters, phthalates, and alternative plasticizers in association with uterine fibroids. Environ Res 189:109874

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang G (2015) Airborne particulate endocrine disrupting compounds in China: compositions, size distributions and seasonal variations of phthalate esters and bisphenol A. Atmos Res 154:138–145

    Article  CAS  Google Scholar 

  • Li N, Chen XW, Deng WJ, Giesy JP, Zheng HL (2018) PBDEs and Dechlorane Plus in the environment of Guiyu, Southeast China: a historical location for E-waste recycling (2004, 2014). Chemosphere 199:603–611

    Article  ADS  CAS  PubMed  Google Scholar 

  • Li PH, Jia HY, Wang Y, Li T, Wang L, Li QQ, Yang MM, Yue JJ, Yi XL, Guo LQ (2019) Characterization of PM 2.5-bound phthalic acid esters (PAEs) at regional background site in northern China: long-range transport and risk assessment. Sci Total Environ 659:140–149

    Article  ADS  CAS  PubMed  Google Scholar 

  • Li Z, Guo S, Li Z, Wang Y, Hu Y, Xing Y, Liu G, Fan R, Zhu H (2020) PM2.5 associated phenols, phthalates, and water soluble ions from five stationary combustion sources. Aerosol Air Qual Res 20:61–71

    Article  Google Scholar 

  • Li X, Zhang W, Lv J, Liu W, Sun S, Guo C, Xu J (2021) Distribution, source apportionment, and health risk assessment of phthalate esters in indoor dust samples across China. Environ Sci Eur 33:19

    Article  CAS  Google Scholar 

  • Li X, Wang Q, Jian N, Lv H, Liang C, Yang H, Yao X, Wang J (2023) Occurrence, source, ecological risk, and mitigation of phthalates (PAEs) in agricultural soils and the environment: a review. Environ Res 220:115196

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Yang J, Fu Q, Ruan T, Jiang G (2019) Exploring the occurrence and temporal variation of ToxCast chemicals in fine particulate matter using suspect screening strategy. Environ Sci Technol 53(10):5687–5696

    Article  ADS  CAS  PubMed  Google Scholar 

  • Liu D, Lin T, Syed JH, Cheng Z, Xu Y, Li K, Zhang G, Li J (2017) Concentration, source identification, and exposure risk assessment of PM2.5-bound parent PAHs and nitro-PAHs in atmosphere from typical Chinese cities. Sci Rep 7:10398

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Ji C, Fu B, Yu Y, Liu H, Shen Y (2020) The cumulative characteristics of PAEs in PM2.5 in Changji, Northwest China. Phys Geogr 41:332–342

    Article  Google Scholar 

  • Liu L, Ma X, Wen W, Sun C, Jiao J (2021) Characteristics and potential sources of wintertime air pollution in Linfen, China. Environ Monit Assess 193:252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Li X, Tan X, Bai H, Li Y, Zhang S (2022) Distribution characteristics, source apportionment, and chemical reactivity of volatile organic compounds in two adjacent areas in Shanxi, North China. Atmos Environ 290:119374

    Article  CAS  Google Scholar 

  • Liu T, Mu L, Li X, Li Y, Liu Z, Jiang X, Feng C, Zheng L (2023) Characteristics and source apportionment of watersoluble inorganic ions in atmospheric particles in Lvliang, China. Environ Geochem Health 45:4203–4217

  • Lu H, Zhu Z (2021) Pollution characteristics, sources, and health risk of atmospheric phthalate esters in a multi-function area of Hangzhou, China. Environ Sci Pollut Res 28:8615–8625

    Article  CAS  Google Scholar 

  • Lu S, Kang L, Liao S, Ma S, Zhou L, Chen D, Yu Y (2018) Phthalates in PM2.5 from Shenzhen, China and human exposure assessment factored their bioaccessibility in lung. Chemosphere 202:726–732

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lunderberg DM, Kristensen K, Liu Y, Misztal PK, Tian Y, Arata C, Wernis R, Kreisberg N, Nazaroff WW, Goldstein AH (2019) Characterizing airborne phthalate concentrations and dynamics in a normally occupied residence. Environ Sci Technol 53:7337–7346

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ma J, Chen LL, Guo Y, Wu Q, Yang M, Wu MH, Kannan K (2014) Phthalate diesters in Airborne PM2.5 and PM10 in a suburban area of Shanghai: Seasonal distribution and risk assessment. Sci Total Environ 497–498:467–474

    Article  ADS  PubMed  Google Scholar 

  • Ma B, Wang L, Tao W, Liu M, Zhang P, Zhang S, Li X, Lu X (2020) Phthalate esters in atmospheric PM2.5 and PM10 in the semi-arid city of Xi’an, Northwest China: pollution characteristics, sources, health risks, and relationships with meteorological factors. Chemosphere 242:125226

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi A, Dobaradaran S, Schmidt TC, Malakootian M, Spitz J (2022) Emerging contaminants migration from pipes used in drinking water distribution systems: a review of the scientific literature. Environ Sci Pollut Res 29:75134–75160

    Article  CAS  Google Scholar 

  • Mohammadi A, Malakootian M, Dobaradaran S, Hashemi M, Jaafarzadeh N, De-la-Torre GE (2023) Occurrence and ecological risks of microplastics and phthalate esters in organic solid wastes: In a landfill located nearby the Persian Gulf. Chemosphere 332:138910

    Article  CAS  PubMed  Google Scholar 

  • Momtazan M, Geravandi S, Rastegarimehr B, Valipour A, Ranjbarzadeh A, Yari AR, Dobaradaran S, Bostan H, Farhadi M, Darabi F, Khaniabadi YO, Mohammadi MJ (2019) An investigation of particulate matter and relevant cardiovascular risks in Abadan and Khorramshahr in 2014–2016. Toxin Reviews 38:290–297

    Article  CAS  Google Scholar 

  • Nan N, Duan H, Yang X, Wang L, Liu A, Chen R, Qin G, Sang N (2021) Atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in China’s four cities: characterization, risk assessment, and epithelial-to-mesenchymal transition induced by PM2.5. Atmos Pollut Res 12:101122

    Article  CAS  Google Scholar 

  • Net S, Sempéré R, Delmont A, Paluselli A, Ouddane B (2015) Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ Sci Technol 49:4019–4035

    Article  ADS  CAS  PubMed  Google Scholar 

  • New Jersey Department of Environmental Protection (NJDEP) (2009) Unit risk factors for inhalation. https://rucore.libraries.rutgers.edu/rutgers-lib/29855/PDF/1/play/. Accessed 22 Mar 2023

  • Office of Environmental Health Hazard Assessment (OEHHA) (2009) Air toxics hot spots program technical support document for cancer potencies. Appendix B. Chemical-Specific summaries of the information used to derive unit risk and cancer potency values. https://oehha.ca.gov/chemicals/di2-ethylhexylphthalate. Accessed 22 Mar 2023

  • Qiao LN, Hu PT, Macdonald R, Kannan K, Nikolaev A, Li YF (2020) Modeling gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in the atmosphere: a review. Sci Total Environ 729:138962

    Article  ADS  CAS  PubMed  Google Scholar 

  • Qiao L, Gao L, Huang D, Liu Y, Xu C, Li D, Zheng M (2022) Screening of ToxCast chemicals responsible for human adverse outcomes with exposure to ambient air. Environ Sci Technol 56:7288–7297

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ramírez N, Cuadras A, Rovira E, Marcé RM, Borrull F (2011) Risk assessment related to atmospheric polycyclic aromatic hydrocarbons in gas and particle phases near industrial sites. Environ Health Perspect 119:1110–1116

    Article  PubMed  PubMed Central  Google Scholar 

  • Salthammer T, Zhang Y, Mo J, Koch HM, Weschler CJ (2018) Assessing human exposure to organic pollutants in the indoor environment. Angew Chem Int Ed 57:12228–12263

    Article  CAS  Google Scholar 

  • Seifi M, Yunesian M, Naddafi K, Nabizadeh R, Dobaradaran S, Ziyarati MT, Nazmara S, Yekaninejad MS, Mahvi AH (2022) Exposure to ambient air pollution and socio-economic status on intelligence quotient among schoolchildren in a developing country. Environ Sci Pollut R 29:2024–2034

  • Shivani S, Gadi R, Sharma SK (2019) Seasonal variation, source apportionment and source attributed health risk of fine carbonaceous aerosols over National Capital Region, India. Chemosphere 237:124500

    Article  CAS  PubMed  Google Scholar 

  • Shruti VC, Kutralam-Muniasamy G, Pérez-Guevara F, Roy PD, Martínez IE (2022) Occurrence and characteristics of atmospheric microplastics in Mexico City. Sci Total Environ 847:157601

    Article  ADS  CAS  PubMed  Google Scholar 

  • Song M, Chi C, Guo M, Wang X, Cheng L, Shen X (2015) Pollution levels and characteristics of phthalate esters in indoor air of offices. J Environ Sci 28:157–162

    Article  CAS  Google Scholar 

  • Su L, Yuan Z, Fung JCH, Lau AKH (2015) A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci Total Environ 506–507:527–537

    Article  ADS  PubMed  Google Scholar 

  • Sun X, Dong W, Liu M, Shen C, Zhang Y, Sun J, Sun B, Li H, Chen F (2018) Validation of a QuEChERS-based gas chromatography-mass spectrometry (GC-MS) method for analysis of phthalate esters in grain sorghum. J Food Sci 2018(83):892–901

    Article  Google Scholar 

  • Sun H, Chen H, Yao L, Chen J, Zhu Z, Wei Y, Ding X, Chen J (2020) Sources and health risks of PM2.5-bound polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in a North China rural area. J Environ Sci 95:240–247

    Article  CAS  Google Scholar 

  • Takdastan A, Niari MH, Babaei A, Dobaradaran S, Jorfi S, Ahmadi M (2021) Occurrence and distribution of microplastic particles and the concentration of Di 2-ethyl hexyl phthalate (DEHP) in microplastics and wastewater in the wastewater treatment plant. J Environ Manage 280:111851

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi S, Kojima H, Saito I, Jin K, Kobayashi S, Tanaka-Kagawa T, Jinno H (2014) Detection of 34 plasticizers and 25 flame retardants in indoor air from houses in Sapporo, Japan. Sci Total Environ 491–492:28–33

    Article  ADS  PubMed  Google Scholar 

  • Walorczyk S (2014) Validation and use of a QuEChERS-based gas chromatographic-tandem mass spectrometric method for multiresidue pesticide analysis in blackcurrants including studies of matrix effects and estimation of measurement uncertainty. Talanta 120:106–113

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Wang SL, Fan CQ (2008) Atmospheric distribution of particulate- and gas-phase phthalic esters (PAEs) in a Metropolitan City, Nanjing, East China. Chemosphere 2008(72):1567–1572

    Article  ADS  Google Scholar 

  • Wang J, Dong Z, Li X, Gao M, Ho SSH, Wang G, Xiao S, Cao J (2018) Intra-urban levels, spatial variability, possible sources and health risks of PM2.5 bound phthalate esters in Xi’an. Aerosol Air Qual Res 18:485–496

    Article  CAS  Google Scholar 

  • Wang S, Zhou Q, Tian Y, Hu X (2022) The lung microbiota affects pulmonary inflammation and oxidative stress induced by PM2.5 exposure. Environ Sci Technol 56:12368–12379

    Article  ADS  CAS  PubMed  Google Scholar 

  • Weschler CJ, Salthammer T, Fromme H (2008) Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments. Atmos Environ 42:1449–1460

    Article  ADS  CAS  Google Scholar 

  • World Health Organization (WHO) (2000) Air Quality Guidelines for Europe. 2nd ed. Copenhagen: WHO, Regional Office for Europe (Copenhagen)

  • Xu C, Zhang M, Chen W, Jiang L, Chen C, Ji Q (2020) Assessment of air pollutant PM2.5 pulmonary exposure using a 3D lung-on-chip model. ACS Biomater Sci Eng 6:3081–3090

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Glamoclija M, Murphy A, Gao Y (2022) Characterization of microplastics in indoor and ambient air in northern New Jersey. Environ Res 207:112142

    Article  CAS  PubMed  Google Scholar 

  • Yin P, Liu X, Chen H, Pan R, Ma G (2014) Determination of 16 phthalate esters in tea samples using a modified QuEChERS sample preparation method combined with GC-MS/MS. Food Additives & Contaminants: Part A 31:1406–1413

    Article  CAS  Google Scholar 

  • Zhang L, Wang F, Ji Y, Jiao J, Zou D, Liu L, Shan C, Bai Z, Sun Z (2014) Phthalate esters (PAEs) in indoor PM10/PM2.5 and human exposure to PAEs via inhalation of indoor air in Tianjin. China Atmos Environ 85:139–146

    Article  ADS  CAS  Google Scholar 

  • Zhang Q, Jiang X, Tong D, Davis SJ, Zhao H, Geng G, Feng T, Zheng B, Lu Z, Streets DG, Ni R, Brauer M, Donkelaar A, Martin RV, Huo H, Liu Z, Pan D, Kan H, Yan Y, Lin J, He K, Guan D (2017) Transboundary health impacts of transported global air pollution and international trade. Nature 543:705–709

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang X, Wang Q, Qiu T, Tang S, Li J, Giesy JP, Zhu Y, Hu X, Xu D (2019) PM2.5 bound phthalates in four metropolitan cites of China: concentration, seasonal pattern and health risk via inhalation. Sci Total Environ 696:133982

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhen Z, Yin Y, Chen K, Zhang X, Kuang X, Jiang H, Wang H, Cui Y, He C, Ezekiel AO (2019) Phthalate esters in atmospheric PM(2.5) at Mount Tai, north China plain: concentrations and sources in the background and urban area. Atmos Environ 213:505–514

    Article  ADS  CAS  Google Scholar 

  • Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W, Li X, Wang L, Wang L, Liu Y, Liu J, Zhang M, Qi J, Yu S, Afshin A, Gakidou E, Glenn S, Krish VS, Miller-Petrie MK, Mountjoy-Venning WC, Mullany EC, Redford SB, Liu H, Naghavi M, Hay SI, Wang L, Murray CJL, Liang X (2019) Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 394:1145–1158

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Guo J, Wang Z, Zhang B, Sun Z, Yun X, Zhang J (2020) Levels and inhalation health risk of neonicotinoid insecticides in fine particulate matter (PM2.5) in urban and rural areas of China. Environ Int 142:105822

    Article  CAS  PubMed  Google Scholar 

  • Zhu ZY, Ji YQ, Zhang SJ, Zhao JB, Zhao J (2016) Phthalate ester concentrations, sources, and risks in the ambient air of Tianjin, China. Aerosol Air Qual Res 16:2294–2301

    Article  CAS  Google Scholar 

  • Zhu Q, Xu L, Wang W, Liu W, Liao C, Jiang G (2022) Occurrence, spatial distribution and ecological risk assessment of phthalate esters in water, soil and sediment from Yangtze River Delta, China. Sci Total Environ 806:150966

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 22036005, 42107426) and the grants from CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. W-JH: writing—original draft, writing—review and editing. XW: conceptualization, validation. J-JD: data analysis, resources, supervision. J-MJ: data analysis, software. M-JLi: project administration, supervision. SJ: sampling. NS: funding acquisition. L-HG: project administration, writing—review and editing.

Corresponding authors

Correspondence to Wen-Jun Hong or Liang-Hong Guo.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 389 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, WJ., Wang, X., Ding, JJ. et al. Seasonal variation, source apportionment, and cancer risk assessment of PM2.5-bound phthalates: a case study in Taiyuan, China. Air Qual Atmos Health 17, 455–467 (2024). https://doi.org/10.1007/s11869-023-01454-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-023-01454-6

Keywords

Navigation