Skip to main content

Advertisement

Log in

Spatio-seasonal variation in ambient air pollutants and influence of meteorological factors in Coimbatore, Southern India

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Air quality is used worldwide to confirm the current status of air pollution level and associated health risks to the public. Several air pollutants reach very high concentrations in many regions across India. In this study, air pollutants were measured in an urban city of Coimbatore, Tamil Nadu, Southern India, during 2013 to 2014 based on season and location, and the influence of meteorological factors. Air pollutants (PM10, PM2.5, SO2, NO2, CO, and O3) across eight locations including industrial, residential, traffic, and commercial areas were assessed. The results showed that PM10, PM2.5, and CO were the most serious pollutants and their average concentrations ranged from 65.5 to 98.6 μg/m3, 27.6 to 56.9 μg/m3, and 1.58 to 8.21 mg/m3, respectively, among various locations. Significantly higher concentration of air pollutants was recorded in industrial areas followed by traffic and commercial areas. Comparatively higher mean concentration of O3 (2.22 ± 0.75 μg/m3) and CO (7.73 ± 1.86 mg/m3) was recorded during the summer season, whereas the concentration of PM10 (80.3 ± 24.4 μg/m3), PM2.5 (45.1 ± 17.7 μg/m3), SO2 (7.86 ± 1.55 μg/m3), and NO2 (13 ± 1.81 μg/m3) was higher in southwest monsoon. Ozone (O3) and CO positively correlated with temperature and negatively correlated with relative humidity. The level of PM10, PM2.5, and CO concentrations exceeded the National Ambient Air Quality Standards (NAAQS) guidelines. The present study’s results emphasize the need of effective air pollution control in Coimbatore. Precautionary measures to be taken to avoid exposure of air pollutants to the public and minimize pollutants. This study further suggests an investigation on the adverse impact on human health and environment using appropriate risk analysis techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in the tyre dust. Environ Int 30:1009–1017

    Article  CAS  Google Scholar 

  • Begum BA, Biswas SK, Hopke PK (2006) Temporal variations and spatial distribution of ambient PM2.2 and PM10 concentrations in Dhaka, Bangladesh. Sci Total Environ 358:36–45

    Article  CAS  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19. https://doi.org/10.1097/WOX.0b013e3182439613

    Article  CAS  Google Scholar 

  • Carnero JAA, Bolívar JP, de la Morena BA (2010) Surface ozone measurements in the southwest of the Iberian Peninsula (Huelva, Spain). Environ Sci Pollut Res 17:355–368

    Article  Google Scholar 

  • Cavalcante RM, Rocha CA, De Santiago ÍS, Da Silva TFA, Cattony CM, Silva MVC, Silva IB, Thiers PRL (2017) Influence of urbanization on air quality based on the occurrence of particle-associated polycyclic aromatic hydrocarbons in a tropical semiarid area (Fortaleza-CE, Brazil). Air Qual Atmos Health 10:437–445

    Article  CAS  Google Scholar 

  • Chang SC, Lee CT (2007) Evaluation of the trend of air quality in Taipei, Taiwan from 1991 to 2003. Environ Monit Assess 127:87–96

    Article  CAS  Google Scholar 

  • Chelani AB (2012) Persistence analysis of extreme CO, NO2 and O3 concentrations in ambient air of Delhi. Atmos Res 108:128–134

    Article  CAS  Google Scholar 

  • Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA III, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918

    Article  Google Scholar 

  • Coimbatore city census (2011) Data. http://www.census2011.co.in/census/city/492-coimbatore.html. Accessed on 18 August 2018

  • Coimbatore Current weather report (2013–2014) https://www.worldweatheronline.com/ coimbatore-weather-averages/tamil-nadu/in.aspx. Accessed 20 June 2018

  • D'Angiola A, Dawidowski LE, Gómez DR, Osses M (2010) On-road traffic emissions in a megacity. Atmos Environ 44:483–493

    Article  CAS  Google Scholar 

  • Debaje SB, Kakade AD (2009) Surface ozone variability over western Maharashtra, India. J Hazard Mater 161:686–700

    Article  CAS  Google Scholar 

  • Dehghan A, Khanjani N, Bahrampour A, Goudarzi G, Yunesian M (2018) The relation between air pollution and respiratory deaths in Tehran, Iran—using generalized additive models. BMC Pulm Med 18:49. https://doi.org/10.1186/s12890-018-0613-9

    Article  Google Scholar 

  • Dey S, Gupta S, Sibanda P, Chakraborty A (2017) Spatio-temporal variation and futuristic emission scenario of ambient nitrogen dioxide over an urban area of eastern India using GIS and coupled AERMOD-WRF model. PLoS One 12(1):e0170928. https://doi.org/10.1371/journal.pone.0170928

    Article  Google Scholar 

  • Dholakia HH, Bhadra D, Garg A (2014) Short term association between ambient air pollution and mortality and modification by temperature in five Indian cities. Atmos Environ 99:168–174

    Article  CAS  Google Scholar 

  • Duenas C, Fernandez MC, Canete S, Carretero J, Liger E (2004) Analyses of ozone in urban and rural sites in Malaga (Spain). Chemosphere 5:631–639

    Article  Google Scholar 

  • Fang X, Fang B, Wang C, Xia T, Bottai M, Fang F, Cao Y (2017) Relationship between fine particulate matter, weather condition and daily non-accidental mortality in Shanghai, China: a Bayesian approach. PLoS One 12:e0187933. https://doi.org/10.1371/journal.pone.0187933

    Article  CAS  Google Scholar 

  • Filella J, Peñuelas J (2006) Daily, weekly and seasonal relationships among VOCs, NOx and O3 in a semi-urban area near Barcelona. J Atmos Chem 54:189–201

    Article  CAS  Google Scholar 

  • Finch J, Conklin DJ (2016) Air pollution-induced vascular dysfunction: potential role of endothelin-1 (ET-1) system. Cardiovasc Toxicol 16:260–275. https://doi.org/10.1007/s12012-015-9334-y

    Article  CAS  Google Scholar 

  • Gaur A, Tripathi SN, Kanawade VP et al (2014) Four-year measurements of trace gases (SO2, NOx, CO, and O3) at an urban location, Kanpur, in Northern India. J Atmos Chem 71:283–301

    Article  CAS  Google Scholar 

  • Ghozikali MG, Mosaferi M, Safari GH, Jaafari J (2015) Effect of exposure to O3, NO2, and SO2 on chronic obstructive pulmonary disease hospitalizations in Tabriz, Iran. Environ Sci Pollut Res Int 22:2817–2823

    Article  CAS  Google Scholar 

  • Goyal SK, Chalapati Rao CV (2007) Assessment of atmospheric assimilation potential for industrial development in an urban environment: Kochi (India). Sci Total Environ 376:27–39

    Article  CAS  Google Scholar 

  • Guan L, Rui W, Bai R, Zhang W, Zhang F, Ding W (2016) Effects of size-fractionated particulate matter on cellular oxidant radical generation in human bronchial epithelial BEAS-2B cells. Int J Environ Res Public Health 13(5). https://doi.org/10.3390/ijerph13050483

    Article  Google Scholar 

  • Gupta AK, Patil RS, Gupta SK (2004) A statistical analysis of particulate data sets for Jawaharlal Nehru Port and surrounding harbour region in India. Environ Monit Assess 95:295–309

    Article  CAS  Google Scholar 

  • Han S, Bian H, Feng Y, Liu A, Li X, Zeng F, Zhang X (2011) Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol Air Qual Res 11:128–139

    Article  Google Scholar 

  • Jain SL, Arya BC, Kumar A, Ghude SD, Kulkarni PS (2005) Observational study of surface ozone at New Delhi, India. Int J Rem Sensors 26:3515–3524

    Article  Google Scholar 

  • Khoder MI (2009) Diurnal, seasonal and weekdays–weekends variations of ground level ozone concentrations in an urban area in greater Cairo. Environ Monit Assess 149:349–362

    Article  CAS  Google Scholar 

  • Kumar R, Naja M, Venkataramani S, Wild O (2010) Variations in surface ozone at Nainital: a high altitude site in the Central Himalayas. J Geophys Res 115:D16302. https://doi.org/10.1029/2009JD013715

    Article  CAS  Google Scholar 

  • Kumar A, Singh BP, Punia M, Singh D, Kumar K, Jain VK (2014) Determination of volatile organic compounds and associated health risk assessment in residential homes and hostels within an academic institute, New Delhi. Indoor Air 24:474–483. https://doi.org/10.1111/ina.12096

    Article  CAS  Google Scholar 

  • Liu L, Guo J, Miao Y, Liu L, Li J, Chen D, He J, Cui C (2018) Elucidating the relationship between aerosol concentration and summertime boundary layer structure in Central China. Environ Pollut 241:646–653

    Article  CAS  Google Scholar 

  • Mohanraj R, Solaraj G, Dhanakumar S (2011) PM 2.5 and PAH concentrations in urban atmosphere of Tiruchirappalli, India. Bull Environ Contam Toxicol 87:330–335

    Article  CAS  Google Scholar 

  • Nasrudin N, Nor ARM, Noor HM, Abdullah YA (2013) Urban residents’ awareness and readiness for sustainable transportation case study: Shah Alam, Malaysia. Proced Soc Behav Sci 105:632–643

    Article  Google Scholar 

  • National Ambient Air Quality Standards (NAAQS) (2009) Central Pollution Control Board in the Gazette of India. Vide notification No(s). S.O. 384(E), dated 11th April, 1994 and S.O. (935(E), dated 14th October, 1998. http://www.moef.nic.in/sites/default/files/notification/Recved%20national.pdf. Accessed 27 August 2015

  • Orioli R, Cremona G, Ciancarella L, Solimini AG (2018) Association between PM10, PM2.5, NO2, O3 and self-reported diabetes in Italy: a cross-sectional, ecological study. PLoS One 13:e0191112. https://doi.org/10.1371/journal.pone.0191112

    Article  CAS  Google Scholar 

  • Pardo CF, Jiemian Y, Hongyuan Y, Choudury Rudya M (2011) Sustainable urban transport. In: Shanghai manual—a guide for sustainable urban development in the 21st century United Nation. http://www.zaragoza.es/contenidos/medioambiente/onu/1203-eng.pdf

  • Pudasainee D, Sapkota B, Shrestha ML, Kaga A, Kondo A, Inoue Y (2006) Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley, Nepal. Atmos Environ 40:8081–8087

    Article  CAS  Google Scholar 

  • Pulikesia M, Baskaralingama P, Rayudub VN, Elangoc D, Ramamurthia V, Sivanesan S (2006) Surface ozone measurements at urban coastal site Chennai, in India. J Hazardous Mater 137:1554–1559

    Article  Google Scholar 

  • Querol X, Alastuey A, Rodriguez S, Plana F, Mantilla E, Ruiz C (2001) Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmos Environ 35:845–858

    Article  CAS  Google Scholar 

  • Reddy BSK, Kumar KR, Balakrishnaiah G, Gopal KR, Reddy RR, Ahammed YN, Narasimhulu K, Reddy LSS, Lal S (2010) Observational studies on the variations in surface ozone concentration at Anantapur in southern India. Atmos Res 98:125–139

    Article  CAS  Google Scholar 

  • Reddy BSK, Kumar KR, Balakrishnaiah G, Gopal KR, Reddy RR, Sivakumar V, Lingaswamy AP, Arafath SM, Umadevi K, Kumari SP, Ahammed YN, Lal S (2012) Analysis of diurnal and seasonal behavior of surface ozone and its precursors (NOx) at a semi-arid rural site in Southern India. Aerosol Air Qual Res 12:1081–1094

    Article  CAS  Google Scholar 

  • Salem AA, Soliman AA, El-Haty IA (2009) Determination of nitrogen dioxide, sulfur dioxide, ozone, and ammonia in ambient air using the passive sampling method associated with ion chromatographic and potentiometric analyses. Air Qual Atmos Health 2:133–145

    Article  CAS  Google Scholar 

  • Sharma AP, Kim K, Kim K, Ahn J, Shon Z, Sohn J, Lee J, Ma BRJC (2014) Ambient particulate matter (PM10) concentrations in major urban areas of Korea during 1996–2010. Atmos Poll Res 5:161–169

    Article  Google Scholar 

  • Shrestha B, Wake CP, Dibb JE, Mayewski PA, Whitlow SI, Carmichael GR, Ferm M (2000) Seasonal variation in aerosol concentrations and compositions in the Nepal Himalaya. Atmos Environ 34:3349–3363

    Article  CAS  Google Scholar 

  • Sivaramasundaram K, Muthusubramanian P (2010) A preliminary assessment of PM(10) and TSP concentrations in Tuticorin, India. Air Qual Atmos Health 3:95–102

    Article  CAS  Google Scholar 

  • Smith L, Mukerjee S, Kovalcik K, Sams E, Stallings C, Hudgens E, Scott J, Krantz T, Neas L (2015) Near-road measurements for nitrogen dioxide and its association with traffic exposure zones. Atmos Pollut Res 6:1082–1086

    Article  Google Scholar 

  • Soylu S (2007) Estimation of Turkish road transport emissions. Energy Policy 35:4088–4094 https://doi.org/10.1016/j.enpol

    Article  Google Scholar 

  • Swamy YV, Venkanna R, Nikhil GN, Chitanya DNSK, Sinha PR, Ramakrishna M, Rao AG (2012) Impact of nitrogen oxides, volatile organic compounds and black carbon on atmospheric ozone levels at a semi-arid urban site in Hyderabad. Aerosol Air Qual Res 12:662–671

    Article  CAS  Google Scholar 

  • Tobollik M, Razum O, Wintermeyer D, Plass D (2015) Burden of outdoor air pollution in Kerala, India—a first health risk assessment at state level. Int J Environ Res Public Health 12:10602–10619

    Article  CAS  Google Scholar 

  • Turner MC, Krewski D, Diver WR, Pope CA III, Burnett RT, Jerrett M, Marshall JD, Gapstur SM (2017) Ambient air pollution and cancer mortality in the Cancer Prevention Study II. Environ Health Perspect 125:087013. https://doi.org/10.1289/EHP1249

    Article  Google Scholar 

  • Viana M, Querol X, Alastuey A (2006) Chemical characterization of PM episodes in north-eastern Spain. Chemosphere 62:947–956

    Article  CAS  Google Scholar 

  • Wang Y, Konopka P, Liu Y, Chen H, Muller R, Ploger F, RieseM, Cai Z, Lu D (2012) Tropospheric ozone trend over Beijing from 2002–2010: ozonesonde measurements and modeling analysis. Atmos Chem Phys 12:8389–8399.

    Article  CAS  Google Scholar 

  • Wang Q, Wang J, He MZ, Kinney PL, Li T (2018) A county-level estimate of PM2.5 related chronic mortality risk in China based on multi-model exposure data. Environ Int 110:105–112. https://doi.org/10.1016/j.envint.2017.10.015

    Article  CAS  Google Scholar 

  • WHO (2013) Health effects of particulate matter. Policy implications for countries in Eastern Europe, Caucasus and Central Asia. WHO Regional Officer for Europe, UN City, Marmorvej 51, DK-2100 Compenhagen, Denmark. http://www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effects-of-particulate-matter-final-Eng.pdf. Accessed 10 June 2018

  • WHO (2016) Urban ambient air pollution database—update 2016. Data summary version 0.2. http://www.who.int/airpollution/data/AAP_database_summary_results_2016_v02.pdf . Accessed 5 June 2018

  • WHO air quality guidelines Global update (2005) Copenhagen: WHO Regional Office for Europe; 2005. www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf. Accesses 15 June 2018

  • WHO Global Ambient Air Quality Database (update 2018). http://www.who.int/airpollution/data/cities/en/. Accessed 20 June 2018

  • Yang WS, Zhao H, Wang X, Deng Q, Fan WY, Wang L (2016) An evidence-based assessment for the association between long-term exposure to outdoor air pollution and the risk of lung cancer. Eur J Cancer Prev 25:163–172. https://doi.org/10.1097/CEJ.0000000000000158

    Article  CAS  Google Scholar 

  • Zhan Y, Luo Y, Deng X, Grieneisen ML, Zhang M, Di B (2018) Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ Pollut 233:464–473

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the assistance rendered by all the research scholars in the department of Environmental Science, PSGCAS, and Coimbatore, India.

Funding

The work was financially supported by the FIST-DST, Govt of India, and partly by PG and Research Grant, Department of Environmental Science, PSG CAS, Coimbatore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Dhananjayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manju, A., Kalaiselvi, K., Dhananjayan, V. et al. Spatio-seasonal variation in ambient air pollutants and influence of meteorological factors in Coimbatore, Southern India. Air Qual Atmos Health 11, 1179–1189 (2018). https://doi.org/10.1007/s11869-018-0617-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-018-0617-x

Keywords

Navigation