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Abstract

This paper is devoted to a simpler derivation of energy estimates and a proof of
the well-posedness, compared to previously existing ones, for effectively hyperbolic
Cauchy problem. One difference is that instead of using the general Fourier integral
operator, we only use a change of local coordinates x (of the configuration space)
leaving the time variable invariant. Another difference is an efficient application of
the Weyl-Hormander calculus of pseudodifferential operators associated with several
different metrics.

Keywords Effective hyperbolicity - Coordinates changes - Weyl-Hormander
calculus - Geometric characterization - Localized symbols

Mathematics Subject Classification 35L15 - 35L.80 - 35S05 - 35S10

1 Introduction

Consider
P = =D} + Ay(t,x, D) + Ag(t, x, D)D; + Ai(t, x, D) (1.1

where A;(z, x, D) are differential operators of order j depending smoothly on ¢,
having the principal symbol

pt,x,7,8) = —t* +al(t, x, &)
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where a(t, x, £) is positively homogeneous of degree 2 in £ and nonnegative for any
(t,x, &) e U x R4 with some neighborhood U of (0, 0) € RA+L,

In [6], Ivrii and Petkov proved that if the Cauchy problem for P is C* well posed for
any lower order term then every critical point of p = Ois effectively hyperbolic, namely
the Hamilton map has a pair of non-zero real eigenvalues there. In [7], Ivrii has proved
that if every critical point is effectively hyperbolic and p admits a decomposition
P = q1q2 nearby with real smooth symbols ¢; vanishing at the reference point, then
the Cauchy problem is C* well-posed for every lower order term, transforming the
original P by operator powers of operator to one with a suitable lower order term for
which a standard energy method can be applied, and has conjectured that this is true
without any restriction.

If a critical point (¢, x, 7, &) is effectively hyperbolic then 7 is a characteristic root
of multiplicity at most 3 ([6, Lemma 8.1]) and if every multiple characteristic root is
at most double, the conjecture has been proved in [9-11, 16, 17]. In [9, 10] the proof is
based on the reduction of the original P to an operator for which an improved version
of the method of [7] can be applied, where the reduction is made applying the Nash-
Moser implicit function theorem. On the other hand, in [16] (see also [19]) the proof
is based on energy estimates with pseudodifferential weights of which symbol comes
from a geometric characterization of effectively hyperbolic characteristic points, after
some preliminary transformations by Fourier integral operators, while in [20] another
way to obtain microlocal energy estimates without the use of Fourier integral operators
was given, where the original P is transformed by Gevrey pseudodifferential operators
on the (¢, x)-space to one with symbol extended in the complex directions, to which
one can apply the classical separating operator method.

In this paper, we propose a simpler derivation of energy estimates and proof of the
well-posedness of the Cauchy problem for effectively hyperbolic operators. Although
we follow [19] mainly, one difference is that instead of using the general Fourier
integral operator when transforming the operator, we only use a change of local coor-
dinates x (of the configuration space which extends as a linear transformation outside a
compact set) leaving the time variable invariant. This allows us to simplify the analysis
of deducing the result for the original operator from that obtained for the transformed
operator. Another difference is the application of Weyl-Hormander calculus of pseu-
dodifferential operators associated with several different metrics. The method has been
used in a naive way in [19], but here we aim to organize the approach thoroughly. As a
result, the argument to derive energy estimates for localized operators is made simpler
and clearer and so is the proof of the local existence and uniqueness of the solution to
the original Cauchy problem.

For the Cauchy problem for operators with triple effectively hyperbolic charac-
teristics, where p cannot be smoothly factorized, see [22] and the references given
there.
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2 Geometric characterization of effectively hyperbolic
characteristics

In this section, we prove the following proposition, which provides a geometric charac-
terization of effectively hyperbolic characteristics ([18, Lemmas 3.1, 3.2], [19, Section
2.1]).

Proposition 2.1 Assume that (0,0, 0, &) is effectively hyperbolic. One can choose a
local coordinates x around x = 0 such that é =e5 = (0,...,0,1) and smooth
function ¥ (x, &), positively homogeneous of degree 0 vanishing at (0, eq), such that
either dyr = d& or dyr = edx| + cdxg at (0, eg) where ¢ € R and e = 0 or 1, and
smooth £(t, x, &), q(t, x,&) > 0 vanishing at (0,0, eq), positively homogeneous of
degree 1, 2 respectively such that

pt,x, T, 8) = —T* + 0t x, &) +qt,x,8), q(t,x,&) >t — )&
2.1

with some ¢ > 0 on a conic neighborhood of (0, 0, eq) where

e, 10,0, e)l < 1. {¥, {¥, ¢1}(0,0, eq) = 0. 2.2

The change of coordinates x +— x(x) can be extended to a diffeomorphism on R?
such that y (x) is a linear transformation outside a neighborhood of x = 0.

The coordinates change is called (a) or (b) according to the resulting form dy =
d&; ordyr = ex| 4 cxg4, in each case one can write

Vx,§) =&1/I5+rx,8), Y(x,§) =exi+cxg+r(x,§) (2.3)
where dr (0, 0, e;) = 0. Note that {y, {¢, ¢}}(0, 0, e4) = 0 implies that
93,4(0.0,eq) =0, 07 q(0.0,e4) =0 (2.4)

according to the case (a) or (b) since 8§2j Eﬂ(o’ 0, d;) = 0 by the Euler’s identity for
homogeneous functions.

2.1 Akeylemma

In this subsection, for typographical reason, we write xq for ¢ and &y for T and denote
x = (x0, x") = (x0, X1, ..., Xg) and & = (§0,&") = (60, &1, ..., &a) sothat p(x,§) =
—£7 + a(x, &). We also write z = (x,&), v = (y,n) € R x RIH! = V. Let
p = (0, &) be a critical point of p = 0 and hence £y = 0 and p(p) = Vp(p) =
(@p(p)/dx, dp(p)/d&) = 0. Consider the Hamilton equation

d (x\ _ _(op)aE
ds (s) = Hp(x.8) = (—ap/ax>
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then it is clear that the linearized equation at p is given by

d (x\ _( 8*p(p)/dxdE 82 p(p)/0EDE \ (x
ds \§ —92p(p)/dxdx —3*p(p)/d€dx ) \&
where the half of the coefficient matrix is denoted by F,(p) and called the Hamilton

map (matrix) of p at p. Denoting the quadratic (polarized) form associated with the
Hesse matrix of p at p by Q(z, v) it is clear that

Q(z,v) = 0(z, Fp(p)v)

where o(z,v) = (&, y) — (x,n),z = (x, &), v = (y, n) is the symplectic two form on
V. From the definition we see p(p + €z) = e2Q(z)/2 + O(e?) as € — 0 and Q has
the signature (r, 1) with some r € N since a(x, &) is nonnegative near p’ = (0, /) €
RI*! x R4, Moreover, it follows from the Morse lemma (see, e.g. [4, Lemma C.6.2])
that one can find ¢4, ..., ¢, and g vanishing at p’, homogeneous of degree 1, 2 in &’
respectively, C* in a conic neighborhood of o’ such that V¢, ..., V¢, are linearly
independent at p’ and g > 0, V2 g(p) = O and

ax, &)= ¢7(x,&) +g(x,&). 2.5)

j=1

With ¢o = & it is clear O(z,v) = —(Vdo, 2)(Veo, v) + 3 5_1(Ve;, 2)(V;, v).
Then noticing (V¢;, z) = o (z, Hyp;) we see that

0(z,v) =0(z, Fpv) = a(z, —o (v, Hy)) Hp, + Zo(v, H¢,_/.)H¢j>
j=1

and hence Fv = —o (v, Hy,)Hy, + Z;zl o (v, Hy;)Hy,. Therefore the kernel and
the image of F), are given by

p
ImF,={zeV]|z= ZajH¢j,aj e R},

Jj=0
KerFp, ={z €V |o(z,Hy;)=0,j=0,...,r}h

(2.6)

Consider the following open convex cone in V
,
— _ _ 2 2
F={zeV ][0k =0@z22=-§+ Z(Vfﬁj, 7)°<0,5% >0} (27
j=1

which is the connected component of {z € V | Q(z) # 0} containing the positive &
axis. Recall [3, Corollary 1.4.7] for which we give a more direct proof here.
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Lemma 2.1 If Fj,(p) has a nonzero real eigenvalue then I' N ImF, # {0}.

Proof Let 1 # 0 be a real eigenvalue and F,z = Az with O # z € V. Then from
0 =o0(F,—Mz,v) =0z, (=F, —Mv) for all v € V we see that F), + A
is not surjective which proves that —A is also an eigenvalue. Let Fz4 = *Aza,
z+ # 0 then zx € ImF), for A # 0. Note that the signature of Q is (r, 1) with
r > 1 otherwise Q(z) would be —Sg and henc_e Fp has no nonzero eigenvalues.
The quadratic form Q induces a quadratic form Q in Vy = V /KerF, which is non-
degenerate and of Lorenz signature. If o (z4, z—) = 0 then Q would vanish on the
2 dimensional linear subspace of Vj spanned by [z ], [z—] which is a contradiction.
Thus with z = az4 + Bz— € ImF), we have

0@) =0(az4 + Bz—, Aazy — ABz—-) = —2aBro(z4,2-).

Choosing «, f such that A o (z4+,z—) > 0 we get Q(z) < 0 hence either z € I" or
—zel. O

For a linear subspace S C V we denote S = {z € V | 0(z,S) = 0} hence
(89)? = S and for 0 # z € V, (z) stands for the line Rz. Introduce the dual cone of
I" with respect to o defined by

C={zeV;o(z,w) <0,Yw e}

The next lemma [19, Lemma 1.1.3] is the key to the geometric characterization of
effectively hyperbolic characteristics.

Lemma 2.2 Let 6 be the unit vector directed to positive &y axis. The following three
conditions are equivalent;

(i) ' NImF, # {0},
(i) there is a linear subspace H C V of codimension 1 such that H N C = {0} and
KerF, + (0) C H,
(iii) T NImF, N (0)7 # {0}.

Proof First note that
zell = ()°NC = {0}. (2.8)

In fact if there were 0 # v € (z)° N C we would have 6 (v, z + w) = o (v, w) <0
for any small w since I' is open leads to a contradiction.

(i) = (ii). We first assume 6 € KerF), +ImF), so that 6 = z1 + 2z, withz; € KerF),
andz; € ImF,.Then0 # z; € I'since € I'andI'+KerF),, C I'and'NKer F, = @.
Itis clear that 6 € (z2)° because KerF), C (z2)? and 22 € (z2)? therefore H = (z3)°
is a desired subspace by (2.8).

Next consider the case 6 ¢ Ker F, +ImF, and hence (Ker F, +ImF,) N (6) = {0}.
Take 0 # w € I' N ImF), then KerF, = (ImF,)° C (w)? and (w)° N C = {0} by
(2.8), while C C ImF), for I' + KerF}, C I" one concludes KerF, + ImF, ¢ (w).
Therefore we have (w)? + (KerF), +ImF,) = V and hence (w)? N (KerF, +ImF,)
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is of codimension 1 in Ker '}, +ImF),. Now writing V = (KerF), +ImF,) @ (0) @ W
(direct sum) it is clear that H = ((w)? N (KerF, +1ImF,)) ® (#) & W is a desired
subspace.

(ii) = (iii). Choose 0 # v € V such that (v) = H’. It is clear that (v) C
ImF, N (6)° for KerF), + (9) C H.Show that v or —v belongs to I". If not we would
have (v) NI = @ and by the Hahn-Banach theorem there were 0 # w € V such that
o(w,z) <0,Yw € C and w € (v)° = H which contradicts with (ii).

(iii) = (i) is trivial. O

2.2 Proof of Proposition 2.1

In this subsection we return to the original notation and write ¢ for xo and t for &
and denote x = (x1,...,xq), & = (&1,...,&4). After a suitable linear change of
local coordinates x we may assume that 5 = (0,...,0,1) = e4. We write p/ =
(0,0, eq) € R x R and p” = (0, e4) € R? x R?. Thanks to Lemma 2.2 one can
take 0 # z € ' NImF, N (6)° where z = Z;:l ajHy, (p) + aoHg, (p) in view of
(2.6), where we see a9 = —o (z,6) = 0 for z € (6)?. Let

ftx,8) = a;pit,x.&)/IE].
j=1

Since Hy(p') = z € Titis clear that 8 f /81 < 0 at p’ in view of (2.7) then one can
write f(t,x,&) =e(t,x,&)(t — ¥(x, &)) where e(p’) < 0. Itis clear from (2.5)

a(t,x, &) > c1(t — ¥ (x, €)% (2.9)

with some ¢ > 0. Since —Hy,—y (p") € I' we see from (2.7) that

1> (Vo;(p), Hi—y (0))> =D {¢j, ¥1(0)

j=1 J=1

from which, taking (2.5) and Vzg(,o’ ) = O into account, we conclude that

v, (¥, al (o) =2] Y 1, 60" < 2. (2.10)

j=1
The next lemma is well known.

Lemma 2.3 Assume dvr # 0 and not proportional to dxg at p”. Then one can find a
system of local coordinates x = (x1, ..., xq) such that either dyy = d&| or d =
dxy + cdxg with some ¢ € Rat p”.

Proof Since 9g,y (p”) = 0 by the Euler’s identity one can write ¥ (x, §) = (d, £) +
(b, %) +bgxg+r(x, &) where & = (&1,...,&4-1), % = (x1, ..., xq—1) and r vanishes
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at p” of order 2. If @ = 0 hence b # 0 a linear change of coordinates X gives a desired
form. If @ # 0 one can assume (i, &) = & + - - - + & renumbering and dilating xj,
1 < j <d — 1. Changing the coordinate x4 to x; — Z];=1 bjsz./2 yields (b, X) +
baxq = Z?:kﬂ bjx;. Changing again the coordinate x4 to x4 — x| Z?=k+1 bjx;
yields by+1 = --- = by = 0 hence after a linear change of coordinates (xi, ..., x¢)
one has dyy = d&; at p”. O

Proof of Proposition 2.1 Let ¢ be the one given in (2.9). If dyy = 0 or proportional to
dxg at p” it suffices to take £ = 0 and ¢ = a because 8§da(,o’) = 0 by the Euler’s
identity. Assume dv/(p”) # 0 and not proportional to dx4. From Lemma 2.3 we may
assume dvy = d&; or dyy = dx| + cdxy. Assume dyy = d&| at p”. If Bfla(,o’) =0
it suffices to take £ = 0 and ¢ = a. Otherwise, thanks to the Malgrange preparation
theorem (e.g. [5, Theorem 7.5.5]) one can write

a(t, x,€) = e(t,x, £)((x1 —h(t,x',6)) + g, x', &), x'=(x2,..., %)

where e(p") > 0 and £, g, vanishing at p’, are of homogeneous of degree 0. Choose

0t x,8) = e 2(t,x,8)(x) — h(t, x', &), q(t,x,&) =e(t,x,6)gt, x', &)

and set Y1 (t, x', &) = W (h(t,x', &), x', &) then dyr; = di at p’. From (2.9) there is
¢> > 0 such that

qt,x, &) > ca(t — Y (1, x', E)*EI.

Since 31 /0t = 0 at p’ one can write t — Y (¢, x', &) = &' (t, x', )t — Yo (¥, §)).
Since dyry, = dyry = d&; at p’ then {yr, {¥2, g}}(0’) = 0 hence it follows from
(2.10) that {¢, 1/;2}2(,0’) < 1. Thus vr; is a desired one. When dy = dx| + cdx, the
proof is similar. In Lemma 2.3 we used coordinates changes such that y = Ax + g (x)
where A is a non-singular matrix and ¢ (x) is a quadratic form in x, thus cutting g (x)
off outside a neighborhood of x = 0 it is clear that the resulting change of coordinates
satisfies the requirements in Proposition 2.1. O

3 Quantitative expression of Proposition 2.1 by localized symbols

In this section, we localize the symbols obtained in Proposition 2.1 around (0, e;)
with a positive parameter M and we will use this M to quantitatively express the
condition (2.2). We first localize coordinates functions. Let x (s) € C*°(R) be such
that x(s) = son|s| < 1, |x(s)| =2on|s| >2and 0 < dx(s)/ds = xV(s) < 1
everywhere. Define y(x) = (y1(x), ..., ya(x)) and n(§) = (n1(§), ..., na(§)) by

yj@) =My (Mx)), nj6) =M x(MEE)," - 8j0). 1<j<d
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where (£), = (y*> +1€/%"/? and 8;j is the Kronecker’s delta. Here M and y are
positive parameters constrained by

y > M*>1. (3.1
Clearly there is C > 0 such that
byl <cM™, mE&l<cM™!, (x,8) e R xR (3.2)

so that (y(x), n(§) + e4) is contained in a neighborhood of (0, e;) which shrinks with
M. Note that (y(x), (7 + eq)(§),) = (x, §) in a “conic like” neighborhood Wy, ,, of
(0, eq) given by

Wiy ={(. &) | x| < M7 [g/I&| —eal < M7'/2, & = yM'?} (3.3)
because if (x, £) € Wy, then
|E/(8), —eal <16/(8), —&/IEI+1§/IE| —eal < M™'/2
+1E)y — IEN/E)y < M2+ v2E), (€ +1EDT <M
From now on, fixing a 7y > 0, we assume that the range of ¢ is also constrained by
1| < ToM 1. (3.4)

Definition 3.1 For a smooth function f (¢, x, &) near (0, 0, ¢;) the localization fj; is
defined to be f (¢, y(x), n(§) 4+ e4). When f is defined in a conic neighborhood of
(0, 0, e4) and of homogeneous of degree m in & we define fyy = f(¢, y(x), n(&) +

ea)(§)y = f(1, y(x), () + ea)(§)y)-

Throughout the paper, A < B means A < C B with some constant C independent
of all involved parameters (M, y here) if otherwise stated. We denote A| =~ A, if
A1 < Arand Ay < Aj. Toexpress (2.2) quantitatively introduce a preliminary metric

G.(w) = M*(|yP* + (£),% D). z=(x.8). w=(y.n) eR xR’ (3.5)

Itis clear that y; € S(M~!,G) and

0g¢n; )] < > M~ DM E ), =850

a=al4-+af |of|>1
x |08 (M (& (€)' — 80| - 108" (M (€} (5), " — 87a))]
< Z M—IMS<§>;WI < M—1+Ia\(g);|a|’ la| > 1

s<|a|

shows n; € S(M~!, G).
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Lemma 3.1 Let f (¢, x, &) be a smooth function in a neighborhood of (0,0, e;z) such
that a,ka;;faff(o, 0,eq) =0fork+|a+ Bl <r.Then fpy € SIM™", G) and

I
fut 66— 7 Wafaﬁaff(O,o,ed)t"y“nﬁeS(M*’*‘,G)
klatBl=r "

and 0; fy € S(M_"H, G). If the term Zk+|a+ﬂ|:r -+ contains no yj then dy, fu €
S(M™", G) and contains no ng then dg, far € S(M™" (é);l, G). Moreover if the term
contains neither ng nor n; (1 <1 <d — 1) then we have 9, fyy € S(M™" (E);l, G).

Proof Noting

om; /98 — 8 DV (MEE), D)), € S(MTE), L G)

forl < j <d-—1,1 <k <d the proof follows from the Taylor formula

fynren= ok 020l £(0.0, ea)iyy”

118! X
kbt Bl=r kla!B!
r+l ! (3.6)
+ ) t"y“nﬂ/ (1—0) 9%3%0F £(01,0y.0n + eq)dd
kla!B! o £
k+|a+Bl|=r+1
where the integral belongs to S(1, G) since |(t, y, n)| < cM—. O

Let x — x(x) be the diffeomorphism on R? obtained in Proposition 2.1 and
denoting (Tu)(t, x) = u(t, k (x)) the localized symbol of T~! PT is given by

P(t,x,7,8) = =12 + £3,(t, x, &) + qu(t, x, ) + a1(t,x, ) +ao(t, x, &)t

where £y € S(M~'(€),, G), qu € S(M™2(§)3,G) and a; € S((€)], G). Noting
[nE)+eq] > (1 — CM~") from (2.1) one finds M| > 0, ¢ > 0 such that

qu(t.x, &) = ¢ (t — Yur(x, £)*(£)3. 3.7
The following two propositions are quantitative expressions of (2.2).

Proposition 3.1 We have {{rp1,qu} € S(M_Z(S)V,G) and that {¥pm, qu}l <
CM_I/ZA/L]M.

Proof Choose f = ¢ and r = 2 in (3.6) then the quadratic form in (¢, y, n) is
nonnegative definite since ¢ (¢, y, 1+ e4) is nonnegative. In the case (a) this quadratic
form contains no y; because of (2.4) hence 831 qu(t,x, &) € S(M_I(E))Z/, G) and

8)%/_ gu(t,x, &) € S((& ))2/, G) by Lemma 3.1 then from the Glaeser inequality one
obtains

|0x,qm| < CM™V2 qar €)y. V). (3.8)
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In the case (b), thanks to Euler’s identity and (2.4) we have Bgdq(o, 0,e4) = 0 and

88521 q(0, 0, e4) = 0 hence repeating the same arguments as above one obtains

19e,qm) < CM™Y2 Jqnr, 10z, qul < CM™U72 Jqug, j#d.  (3.9)
J

Next study v/, In the case (a) since |1(§) + eq]> = Z, h n, +a+D>P=1+k

with k € S(M~', G) hence 1/|n(§) + eq| = 1 + k with k € S(M~!', G) one sees
mE)/|1nE) + eql — n1(&) € S(M~2, G). Then noting (2.3) it follows from Lemma
3.1 that

Ym(x. &) —mE) e SM2,G), ax,.wM(x £)esSM'.G), Vj.

o . 7 (3.10)
0z ¥m(x, &) — 815 " (M&1(§),, )(E) €S(M™ (S),,,G), Vj.

In the case (b) we have similarly that

Y (x, §) — ey1(x) — cya(x) € S(M 2, G),
Og; ¥ (x, §) € SIM™'(&),1,G), V) (3.11)
ox; ¥ — €81 x D (Mx1) = eda jxV(Mxq) € S(M™Y,G), V).

Now proceed to the proof of the proposition. In the case (a), noting dy,qu €

S(M~2 (E)}Z,, G), the first assertion follows from (3.10) and Lemma 3.1. The second
assertion follows from (3.8) and (3.10). The proof for the case (b) is similar. O

Proposition 3.2 We have {£yr, vy} € S(1, G) and sup |[{€yr, ¥} < |k| + cM!
where |k| < 1.

Proof Note that dg,{y € S(M~!, G) for 0¢,£(0,0,e4) = 0 by Euler’s identity.
According to the case (a) or (b) we have ¢ Yy € S(M™', G)or dg Y (M~ (§), ", G)
for |e| = 1 in view of (2.3) then it follows from (3.10) and (3.11) that

e, Y} +oex VM)V (MEE),H) e S(MT, G)

where k = 0,,£(0,e4) or k = —e0g£(0, e4) and |k| < 1 by (2.2). Noting that
x D Mx)x D (Mg (S);l) € S(1, G) and whose modulus is at most 1 the proof is
complete. O

From now on, for notational simplicity we simply write 1, £ and g instead of ¥y, £/
and gu.

4 Energy estimates for localized operators

In this section, we utilize t — ¥ (x, &) obtained from the geometric characterization of
effectively hyperbolic characteristic points to derive the weighted energy estimate for
the localized operator P = op(P(t x,T,£)).
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4.1 Metrics and weights related to energy estimates

In this paper the following simple metrics are used;

2 =(€),ldx|> + (£);1dE >, g =I|dx|> + (§);%[dE)>, y = 1,

4.1)
ge = M2 (g), |dx|* + M~ P (g) Ndg )P,y = M* > 1

where g is related to the coordinates change (a) or (b), namely € is either a or b and
Scer = 1if € = €’ and 0 otherwise. The properties of pseudodifferential operators
associated with metrics (4.1) are summarized in the Appendix. It is clear that

8 /8l <M?, M7Pg<g <}
such that g, satisfies (6.31). Noting that a € S(m, g¢) if and only if

19990 al S mM—<@P () J1D2 ¢(, B) = |aldeq + |Bler. o, B € N

and M1+1(e) 1Pl < (M4 () )t BI2 i —<@P) () J*I7IPD it clear that S(m, G) ©
S(m, g¢). Following Sect. 6.2 we set

b= (q(t, x,&) + 1) )'?

then there exists A such that for A > A both Proposition 6.1 and Lemma 6.8 hold. From

now on we fix such a A = A, while M and y remain to be free under the constraints
(3.1) and (6.21). Introducing

o, x, ) = ((t — ¥, 6)° + &), H? 4.2)

and taking (3.7) and (¢ );l/ 2 < o into account one sees that b satisfies (A > ¢ can be
assumed)

b= g+ = (ct —v)72E)2 + 1))
> e o7 E)y (0 = ¥)2e? + 2 (6); 1) 4.3)

> e 1), (1t — vt +6),%)? = Ve/2 wif),.
Lemma 4.1 We have 3%0Lq € S((&), P10, 2) for |l + Bl = 1, dig € S((&)yb. D)
and {q, ¥} € S(M~'?b, ).

Proof The first two assertions are immediate consequences of Lemma 6.7. The third
assertion follows from Proposition 3.1 and (6.30). O

The following weight is a key to energy estimates

¢, x, &) =wt,x,§)+1—Y(x,8§)
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where it is clear that ¢ verifies

M), /C <€), /Qw) <p <CM", (4.4)

—o%afy 0ol
¢+ ,
2w

ap=o"'p. 30lp= o+ Bl=1. (4.5)

Lemmad.2 We have 820w € S((&), > M—<@P) (&))" o)) for ja + B| = 1.

Proof Recall that v = 11 (&) +r or ¥ = ey (x) + cyq(x) +r withr € S(M~2, G)
according to the coordinates change (a) or (b). Forv = 8"+ 8, |8| > 1 we have

For u = o’ + «, |a| > 1 one has
|3)Iciw| < M1 tIn < <§>;1/2M75(Ms0)<$>¥L‘/2(M2+256a <$);1)(|M|*1)/2_

Letu = o +a, |a| > 1and v = B’ + B, |B| > 1 then noting | + v| <
2|+ v| — €(u, v) one has
oy y| < M-l g) v
S (&), P g Q=D (g g Ty Abvi=D2,

Since M> 120 (5);1 < M4(§>;1 < 1 by (3.1) the assertion is proved. m|

Lemma 4.3 We have 3%0f @* € S(*~1(£); " 2())* V2 o) for |+ Bl = 1 and
s € R. In particular ©° € S(o°, ge¢).

Proof We first show the assertion for s = 2. Since w? = (t — ¥)? + (é); ! noting
w(€))/* > 1and |t — Y| < o one sees for v = B’ + B, |B] > 1 that

|8Eva)2| 5 CUM_I_Seb-Hvl(S);lUl + M_2_286h+|‘)|<%->;‘\)‘ + <€;>;1—|U|
S €)M &) MR ) (D

where it should be understood that the second term on the right-hand side is
absent when |[v| = 1. To estimate the last term it suffices to note (& );Iv‘ <

(M2(8); )M =0 () 12 When = o + a, Ja] = 1 we see

|8)’fa)2| < M1 Teatlnl o pp—2=2eatlnl
S w(§); M0 ()2 (25 () 1y (el =D)/2
+w(§);1/2M_E(”’O)(E)'V’"/Z(M“Z‘Sea (g);l)(ml—Z)/z
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where if || = 1 the second term on the right-hand side is absent as above. When
w=o +a,v=p0"+B,la+p| > land |u| > 1,|v| > lnotingthataffagl/f = a,é‘agr

and 8};8;1// € S(M—3+|#+VI<§);|”|, G) we have

|353§602| < |a)8)’c‘8§r| +M—3+|H+v\(§);lv\

< wM—2+IM+v\(§);Iv\ + Ml—lu+v\(§);1(M4($);1)(Iu+v\—2)/2(@;(W\—Iv\)ﬂ
w<§>;1/2M—€(MVV)(g))(/lul—\VI)/2(M4(§);1)(IM+V\—1)/2
+w<§);l/2M—e(a’,ﬁ’)(;§>§/Ia’l—\ﬁ’l)/2(M4<§>;l)(\#+VI—2)/2<§>§,\a\—lﬂ\)/2

N

where 1 — | +v| < —e(a/, ') and (5);1 < a)(f,f);]/z are used. Thus the case s = 2

is proved. Since (E);l/ 2 < w it is obvious w? € S(w?, g¢). The estimates for general
®° = (w?)*/? follows from those of w?2. O

Lemma 4.4 We have ¢ € S(¢, gc).
Proof Using (4.5) we write

—8;’851/f¢+ ocof (£);!

By
a;;lagcp_ o

= ¢op® + Vap, la+Bl=1. (46

Since ! € S(w™ 1, gc) by Lemma 4.3 then

|8}f8§(1//a;3)| < wfl<s);lMfe(u,v)<;§>)(/\a+lL|*|ﬂ+V|)/2(E);l/z

< ¢M*€(a+/t,ﬂ+w <§))(/Ia+ulf\ﬂ+vl)/2 @7
in view of (£);'/* < M~ and (4.4). On the other hand Lemma 4.2 shows
bap € SUEVTIED2 g ) a4+ Bl = 1. (4.8)

Hence differentiating (4.6) the assertion is proved by induction on |« + 8| noting (4.7)
and (4.8). O

Proposition 4.1 We have o® € S(&°, g¢) and ¢* € S(¢°, g¢). For |a + 8| > 1

009l € S (£); "2 (&) |00 o),
070l 9" € S (5), ()TN0, o).

Proof It remains to prove the assertion for ¢. Let g, Y¥op be those in (4.6). Note
bup € S (E); 2 () ITIFV2 o) for Ja + B] > 1 by Lemma 4.2, while 5 €
S 1E), Pp(&) I o) for |o + B| > 1 because of (4.7) and (4.4). Hence
the assertion for s = 1 follows from (4.6). The estimate for general s € R follows
from the estimate for the case s = 1. O
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Proposition 4.2 w and ¢ are g. admissible weights (Definition 6.1).

Proof 1t suffices to show
0@+ w) < Co@) (1 + ge(w), ¢@z+w) < CHE)(1+ ge (W) (4.9)
If |n] > (£), /2 noting (£); /> < w < CM~" one has

8ez(w) = M72E) P = M), /4 = (MT2(8),/%)(6),/%/4 = (£),/% /4.
Thus in view of (4.4) one sees

wE+w) <M~ < CM7(E))?02) < Co@)( + ge(w)), @10,
Pz+w) <CM' <CM™2E),¢(2) < CHER( + ge . (w))*. '

Assume [n] < (£),/2.Set f =t —y and h = (£);"/? so that ® = £2 + h2. Since
Ifz+w)+ f@)/loz+w) +w(z)| and |h(z + w) +h(2)|/|o(z + w) + w(z)| are
bounded by 2 we have

lw(z + w) —w(z)| = Ia)z(z + w) — a)z(z)l/la)(z + w) + w(2)|

A.11)
<2lf(z+w)— f@|+2/h(z+ w) — h(2)].

Noting | f(z + w) — f(2)] = |¥(z + w) — ¥ (z)| the estimate

|f@+w) — f@)] < CM P |y| + M (& 4 sn); n])
< CE) P E) Pyl + M (E) P D) (412)
< Co(gllw).

follows from Lemma 4.2 and (6.28). Similarly noting g¢/7(w) > M~'(£);,'/*|5| one
-3/2 _1 . 1/2 1/2
has [h(z + w) — h(z)| < C(€);°Inl < CM(§); g7 (w) < Co(2)gels (w) hence

(4.11) gives
0(z + w) — ()] < Co(2)gl (w). (4.13)

Together with (4.10) one concludes that w is g admissible weight. Turn to ¢. Since
¢ = w + f one can write ¢ (z + w) — ¢(z) as

(fz+w) = f)PE+w) + () + 7 +w) —h (@)

(4.14)
w(z+w) + w(z)
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where | f(z + w) — f(2)] < C(§);* g2 (w) by (4.12) and [h2(z + w) — h2(2)] <

CM(), 3 2g€1/22(w) is easy. The insertion of these estimates into (4.14) yields

—12

&)y
w(z+w) +w(z)

M), ) 12
—a)(z+w)+a)(z) 8elz (w).

¢z +w) — ()] §C< (¢(z+ w) + ¢(2)

(4.15)

From ¢ (z) > M(S);I/C by (4.4) it follows that

-1/2
¢z +w) — ¢ < CPp(z+w) + 2¢(Z))m gel,/z2(w)-

£ C(E);, " g2 (w) /(0 +w) + w(2)) < 1/3 then |¢(z +w)/$(2) — 1| < (P (z+

w)/¢(z) + 2)/3 and hence

20(z4+w)/5 < ¢(2) <4¢(z+ w). (4.16)

1t C(£), 2 g2 (w) /(0 (z +w) + 0 (2) = 1/3 then C2g L(w) > (£), (@(z + w) +

w(z))2/9 > 2(§),w(z+w)w(z)/9 hence noting ¢ (z) > (S);l/(Za) (z)) and using an
obvious inequality 2 w(z + w) > ¢ (z + w) one obtains

18C*(1 + ge.(w) > ¢ (z +w) /p(2)

which together with (4.10) proves that ¢ is g. admissible weight. O

4.2 Weighted energy estimates

With A which we have fixed in the previous section we write 13(t, x,7,€)as

P(t,x,7,6) = =2 + £2(t, x, &) + (q(t, x, ) + A(E))
+(ai(t, x, &) — A)(E)y +ao(t, x, &)T.

Let us denote

P =op(P(t,x,1,£), L=op),
Q = op(q +A{E)y), VO =op((g+r(E),)?) = op(b).

In what follows P and f’(t, x, T, &) stands for operator and its symbol respectively.
Since ¢ € S(M~'(€),, G) hence 823/ ¢ € S(M (&), !, go) for |a+p| = 2, Theorem
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6.1 shows £#L — €% € S(M?, gc) so that op(£?) = L? + op(r) with r € S(M?, gc).
Thus P can be written

P=-D}+L*+Q+BoD,+ Bi. Bi=op). a €S, g). (4.17)

for M? < (5))1,/2. Let & > 0 be a parameter we consider 139 = ¢ 01 pelt, Noting
(D; —i0) = e~ D, one can write Py as

Py=—-A>+L>+Q+ByA+B), A=D,—if. (4.18)
Here we define several weights for energy estimates.

Definition 4.1 Define ®5* = op(w /2¢p™), ¥a* = op(w' */2(£),¢™), k =
0, 1,2, 3. We denote <D,(1)ﬁ, @,iﬁ simply by &,,, q),]f. We apply the same abbreviation for
lI/,{‘ ? For simplicity we will write @K%, k% dropping the parameter 7, but it should be
reminded that they include parameters n, M and y.

Throughout the section, small letters such as c, ¢, ¢, ¢; denote constants independent
ofn, M,y and 6, while capital letter C, may change from line to line, denotes constants
which may depend on n but independent of M,y and 6.

Lemma4.5 If K* = K then
2Im(@ Ku, ® Au) = 0,(KQu, @u) + 20(KDu, du)
+2Im([@, K]u, ® Au) + 2Im(K Du, [©, Alu) (4.19)
— Re((0;K)Du, du)

and we have

2m(@ Ku, @ Au) = 3, | @ Kull> + 260||® Kul?
+2Im(®[A, Klu, ®Ku) + 2Im(A, P1Ku, ®Ku)
+2Im([@, K]Au, @ Ku) + 2Im(P Au, [K, P1Ku).
(4.20)

Proof To see the first equality it is enough to write

(PKu,®Au) = (@, Klu, ®Au) + (KQu, (@, Alu) + (KDPu, Adu)



A more direct way to the Cauchy problem for effectively... Page 17 of 55 20

and note 2Im(K @u, A®u) = 0,(K®u, ®u) + 20(K du, ®u) — Re((8;K)Pu, du)
for 9; =i A — 6. To see the second equality write

(®K?u, ®Au) = (@, K|Ku, ®Au) + (K@ Ku, @ Au)
= (@, K]Ku, ®Au) + (®Ku, [K, ®]Au) + (PKu, PK Au)
= ([®, K|Ku, ®Au) + (PKu, [K, P]Au)
+ (@Ku, ®[K, Alu) + (PKu, ®AKu)
= ([®, K|Ku, ®Au) + (®Ku, [K, P|Au) + (PKu, P[K, Alu)
+ (@Ku, [®, AlKu) + (PKu, A®Ku)

where the twice of the imaginary part of the first 4 terms on the right-hand side
coincide with the last 4 terms on the right-hand side of (4.20). Thus it suffices to show
2Im(®Ku, AOKu) = 3 ||®Ku||> + 20|/ & Ku||> which is clear. O

We aim to estimate 2Im(<1>139u, @ Au). Start with 2Im(®L2u, ® Au). Consider
2Im([A, ®]Lu, ® Lu). Since ;¢ = w~'¢ then [A, @] = inop(w~'¢~") hence

2Im([A, @)Lu, ® Lu) = 2nRe(op(w™'¢ ") Lu, op(¢ ") Lu).

Noting ¢ "#(w o) —w 92" € S(M'w'¢~2", g.) we have from Corollary
6.4 and Lemma 6.11 that

2Im([A, @]Lu, ®Lu) > 2n(1 — CM )| @*Lu|>. 4.21)
Next estimate 2Im(® Au, [L, ®]Lu). One can write

O H(UHGT" — T HO) = —n{l, Yl o + 1 + 12,

L _ (4.22)
reSM o 9T, g), e S(pT, go).

In fact since 990/ ¢ € S(M?(£), "1, go) for | + B| = 3, Theorem 6.1 and Lemma
4.4 show ((#p™" — ¢ "#L) + i{l,9p™ "} € S(¢p7", ge). On the other hand one
sees {€, 7"} = —inw €, Ylp™" + inw L, (é);1}¢_"_1 in view of (4.5) and
o 1L, (€)1} € S(¢7", ge) by (4.4). Since {£, ¥} € S(1, ge) Proposition 3.2
and Theorem 6.1 prove (4.22). Therefore from Lemma 6.11 we have

|(®Au, [L, @]Lu)| < nllop({€, ¥}) P Aul|| 7 Lu]|
+CM Y| ®FAu|||| @ Lu| + C||@ Au||||® Lul.

Since [|(op({€, ¥ Dv|| < (k| + CM~'/?)||v| by Proposition 3.2 and Corollary 6.6
one obtains

(@ Au, [L, @1Lu)| < n(lx| + CM~?)||@% Au|||®* Lul| + C||® Aul|||® Lul|.
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Since the term |([@, L]Au, @ Lu)| is estimated similarly one concludes

21(®Au, [L, ®1Lu)| + 2|((®, L1Au, @ Lu)|
<2n(lk| + CM~ V) (|0% Aul* + | P Lul|l?) (4.23)
+ C (1P Aul* + [|[® Lull?).

From [A, L] = —i op(3;¢) and 0, € S({§),, ge) it follows that ¢~ ""#¢p~"#(9;() =
(30" +r withr € S(M~1(&), 67", g) then the estimate

2|(@[A, Llu, @ Lu)| < 2]lop(d:£(£); )W u |97 Lu]

(4.24)
+CM YW U |97 Lull < (co + CM (1% u)? + |0° Lu|?)

follows from Lemma 6.11. Thus (4.20), (4.21), (4.23) and (4.24) give

Lemma 4.6 We have

2im(®L%u, ® Au) > ;|| @ Lu|l* + 26 — C)||® Lu/)*
+2n(1 — || — co/2n — CM VY2 || @ Lu||> = 2n(k| + CM~'/?)||®% Au|?
—(co+ CM™V2)|wtu)? = C||@ Aul>.

Turn to —2Im(P A%u, ® Au). Choosing K = [ and L = [ in (4.19) and (4.21)
respectively one has

—2Im(® Au, Du) = ;|| Pul|> 4 20| Du|® + 2Im([A, Dlu, Du) 425)

> ;| @ull* +20(|@ul* + 2n(1 — CM ™) || @%u]*. '

Replacing ® by @ a repetition of a similar argument shows
—2Im(@% Au, %u) > 0,2 ull> + 20|27 u|)> + 2n(1 — CM Y| @3 u|?.

Since the left-hand side is bounded as

20(0% Au, )| < 2(1 + CM ™Y |0 Aul|[|®¥u]|
<n Y Au|? + n(l + CM Y| @32

we conclude
D% Aull® > nd, || @2 ul> + 20n|| @ ul> + n>(1 — CM ™Y |&3u|®>. (4.26)
Replacing u by Au in (4.25) one has
—2im(P A%u, D Au) > 3| P Aul|*> +20||@ Au|)® + 2n(1 — CM V)| @ Au|)?

where we replace v||®?Au||> (0 < v < 2) by the estimate (4.26) to obtain
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Lemma4.7 Forany 0 < v < 2 the following estimate holds.

—2Im(® A%u, ®Au) > 3 || Aul)® + 20D Aul®
+2n(1 —v/2 —CM™ Y| P" Aul?
+ vn?0, | D% ul? + 2v0n? | u|?
+vnd(1 — CcM Y@ u).

4.27)

Finally we estimate Im(® Qu, ® Au). Study Im([®, Qlu, @ Au). From Proposition
4.1 and Theorem 6.1 it follows that ¢ " #(¢p "#(£), — (£),#¢p ") € S(w'dp™", ge)
hence Lemma 6.11 shows

(D, (D), lu, ®Au)| < C|@%ul||® Aul < C(|P**ul* + ||P Aull?).
To estimate Im([®, op(q)]u, @ Au) we shall examine that

¢ g — qitd " = —inw "y, ql¢ " + 11 + 12,

) 1 (4.28)
ri € S(bp™,8), meSMow ¢ ", g).

Indeed since 0 ng € S(M(S))z,_w, ge) for |a+ B| = 3, Proposition 4.1 and Theorem
6.1 show ¢™#q — g™ = —i{p™",q} +r withr € S(Mw~'¢p™", gc). Note
(07", q) = no 'Y, q}o™" — nw—l{@);l, q}¢™"~1/2 by (4.5) where the second
term on the right-hand is S(b¢ ™", g) because of Lemma 4.1 and (4.4), hence (4.28).
Since {9 ™", g} € SM~120p~pp", 2) by Lemma 4.1 it follows from Lemmas
6.12,6.11 and (4.28) that

(@, Qlu, ® Aw)| < CM~'2(IIV/Q D%ul® + || F Aul|?)

(4.29)
+CIVO ®ul® + CM (1P Aul® + | @%ul?).
Lemma 4.8 The following estimate holds.

2m(QPu, [, Alu) > (n — CM ™)1/ 0 &7ul?
—CM™2| @ u|? — I/ Q dul? — CM| ¥ u|.
Proof Note 2im(Q®u, [®, Alu) = 2nRe(Qop(¢p")u, op(w ¢ ")u) and write
o7l = o7 PH(1 + #1297 and 0~ PH¢" = (1 4+ #1297
withk, k € S(M~1, g¢) by use of Lemma 6.10, then one can write

(Qop(¢™)u, op(w™'¢ ") = (op(1 + k) Qop(1 + k)@ u, & u)
+(op(1 + k)[op(@~'7%), Q1®u, ®"u)

where [op(w /%), 01 = Y3 op(r;) and

reSM 203, 8), re S %, 3), r3e S(Mw?, g0). (4.30)
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In fact a)’l/z#(é)y — (s)y#a)’l/2 € S(w3/?, g¢) is clear from Proposition 4.1 and
Theorem 6.1. Similarly w ™'/ ?#g — g#w™ /> +i{w™ /%, q} € S(Mw™3/?, g.), where

™2, q) = 02t = Y)(¥. q}/2 — 0P ((E), L g} /4 (4.31)

The first term on the right-hand is S(M~V2p=3/2p, g) because of Lemma 4.1 and
(t — ) € S(w, g¢) and the second term is S(w™ 1%, g) thanks to Lemma 4.1 and
0 %< (€)y, hence (4.30) is examined. Applying Lemma 6.12 we have

|(op(1 + b)[op(@™/2), Q1Pu, d*u)| < CM™2(IIV/Q @%u))? + [@¥u|?)
+CIIYVQ @ul* + CM| D% u)?.

Turn to (op(1 + k) Qop(1 + k)@%u, ®°u). Since k#(q +A(£),) € S(M~'b?%, g) from
Lemma 6.12 one has |(0p(l€)Qq5ﬁu, <I>uu)| < CM~'|/O ®%u||?>. Terms such as
‘ (Qop (k)P u, dtu) ‘ are estimated similarly. To conclude the proof it suffices to apply
Lemma 6.8 to (Q®%u, &%u). o

Lemma 4.9 There exists ¢c; > 0 such that
(3 Q)®u, u)| < (c1 + CM~ Y1V O @%ul® + |¥Ful?).  (4.32)

Proof Write ¢ "#3,q#¢™" = (w!/2(&), ¢ "#r# (@ /2¢™") with r € S(b, gc)
by using Lemmas 4.1, 6.10 then [((3;Q)Pu, du)| < ||0p~(r)d>ju||||d/nu||. Write
(@2 (1 + b#@' 79" = 1, (07 2(8), ' ¢"#( + o'/ (6),0™) = 1
with k, ke S(M_l, g¢) by using Lemma 6.10 it is clear

r=(w 2(E), (L + Ko #(Oq)HG T H( + k)#(o'P¢").

From Theorem 6.1 one sees ¢ "#(1 4+ k)#(w'/?¢") — w'/? =1 € S(M~'w'/?, go)
and (0~ '72(8), 'p"#(1 + btp™ — 0 V2(E)N =T € SM 1w 2(E), 1 go)
hence r = ((§);'0™2 + D#@P#©@'? + 1) = (§); 0”@t + F
where 7 € S(M~'b, g) by Lemma 4.1. Noting ((£);,'0™"/2)#(0;q)#w'/? € S(b, g)
is independent of n we have [lop(r)v|| < (c1 + CM~1)|/O v| from Lemma 6.12
with some ¢; > 0. Putting v = ®%u we conclude the proof. O

Choosing K = Q in (4.19) it follows from (4.29) and Lemmas 4.8, 4.9 that

2Im(@ Qu, @ Au) > 3,(QPu, Pu) + (6 — C)|v/Q Pul?
+n =1 = CM™)I/Q % u|)* = (cr + CM )| whu?
—CM'2(| 0 Aul? + | @ ull?) — CM (@ Aull? + @2 ul?).
(4.33)

Writing ! =*/2¢=" &)y = ((é)yw)(w’k/qu’”) we have from Lemma 6.11

(1 —CM YW u| < llop((£), )@ ul. (4.34)
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Let b € S(b™". §) be given in Proposition 6.1 then b € S(w™'(§),!. ) by (4.3).
Hence writing (£),w = ((£), w)#b#b with ((€), @)#b € S(1, §) there is ¢ > 0 such
that [lop((§), w)v| < ¢ |l+/Q v|| thanks to Theorem 6.2. Replacing v by @Kty we have
from (4.34) that

Lemma 4.10 There exist ¢ > 0,c¢ > 0, C > 0 such that

c(1 = CM™ YD)/ iou) < (1 — e~ W || < ¢l Q &*ul|

(4.35)
fork=0,1,2.
. . . . . —nge\1/2+k/4 1/2
Proof It remains to show the left side inequality. Write ¢~"(£), = (w
(5))1,/4)_2“"‘(601_"/2(;5_”(’g‘)y) then from Lemma 6.11 there is ¢ > 0 such that
(DY du| < (1 + CM) W] for k < 2. o

In (4.33), replacing ||¥%ul|> by the estimate (4.35) one has

Lemma4.11 We have

2IM(® Qu, ® Au) > 8,(QPu, Pu) + (0 — C)|ly/Q Pul?
+n(l — (1 +&)/n— M~/ 0 &*ul?
—CM72(1 0% Aul? + @3 ul?) — CM (|| D Aul® + |@%ul?).

Finally we estimate the lower order term ByA + B;. Since a; € § ((S){;, gc) Lemma
6.11 shows
2/(@Biu, @ Au)| < 2[lop(ar (&), )@ Aull|¥Ful|
+CM Y@t Au|l||wtul (4.36)
< @+ CM Y17 Aull? + |¥7u)?).

Similarly 2|(® BoAu, ® Au)| < C||® Aul|>. Then from Lemmas 4.6, 4.7, 4.11 and the
estimates of lower order term one has

Proposition 4.3 We have

2Im(® Pou, ® Au) > 3, {1 Lu|* + | P Aul* + (QPu, Pu)
+on?|@Ful?} + 0 — CM) (1D Lu|* + | Aul* + ||/ Q Pul?)
+2n(1 — k| —v/2 — (co + &) /2n — CM~ /%)
(107 Aul® + | * Lul|?)
+n(l = &(co+ &) /n —c1(1+ &) /n — CM~ )|/ Q d*u|?
+Qvon? — CM) || D% u|? + (vn® — M™%y |32
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Lemma4.12 Forn > 1 there is C > 0 such that
[@ull < CIKD)Y, ull, lull < Cll@ull, I(D)yull < CllvVQ ®ull.

Proof Since ¢ " < Ca" (E)’; < C’(E);ﬂ then ¢ ™" € S((S)’}ﬂ, g¢) by (4.4) hence the
first inequality is clear from Lemma 6.11. Since ¢ 7" > 2w)™ > C > 0 for ¢ < 2w

hence 1 € S(¢™", g¢) which proves the second inequality. The third inequality follows
from w¢p™" (&), > Cwl_”(g)y > C’(£), and Lemma 4.10. m|

In Proposition 4.3 we fix v > 0 such that 1 — k| — v/2 > 0. Then choose n such
that
1 -kl —v/2—=(co+¢)/2n >0, 1 —¢(co+¢c)/n—c1(1+¢)/n >0 (4.37)

and fix such a n. Note that (4.37) is always satisfied for any n greater than such a fixed
n. Next, for such fixed n, choose M such that the arguments in this section should be
justified, namely the assertions in Sect. 6.3 hold with

m, mi =€), k<2, |s|<1, Il <n (4.38)

and the coefficients of the last four terms in Proposition 4.3 and that of Lemma 4.10
will be positive, and fix such a M then choose y such thaty > M 4andy > AM? and
fix such a y, while 0 is assumed to be free still. Once M and y are fixed, denoting by
go the metric g with y = 1, there are C, Cy such that

(6)°/Cs = (&), = Cs(€)', 80/C =G = Cgo

then S((§)3,, G) = S((§)*, go) = S*. In particular, [|(D)3, -|| is equivalent to [|(D)* - .
The range of ¢ is consequently fixed if M is fixed by (3.4). As long as y is fixed, it is
allowed to write (§),, as (§). After fixing n, M, y and taking Lemma 4.10 into account
we have

Proposition 4.4 There exist ¢ > 0, ¢* > 0, 89 > 0, 6y > 0 such that for |t| < 8,
6 > 0y one has
2Im(® Pou, @ Au) > 3,10 Aull® + | Lull® + (QPu, Pu) + c*[|®*ul|*}
+c (1@ Aull® + 1@ Lull® + IV Q @ull® + (D) > dul?)
+e(I1DP Aull + 197 Lull® + 11y Q @%ul| + (D) *Dul|?).

Definition 4.2 Denote
~2
E (u) = ||1P Aull® + | @ Lul* + (QPu, Du) + c*||&*ul|?,

~2
E,(w) = | D*Aul? + | @ Lu|* + @7/ Q ul* + [ (D) * dul|.

Denote the substitution of A with D, in the definition & : (u) and gﬁz (u) as £2(u) and
Sf(u) respectively.
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To effectively utilize Proposition 4.4, noting that 02 e S(M? (5))2,, G) we intro-
duce

LT =op(b1) = op((€* + X(£),)"), b} =02 +1E),

where it can be assumed that X is chosen so that both Proposition 6.1 and Lemma
6.8 hold.

Lemma 4.13 There is C > 0 such that
~2
@ Aull® + | @ L ul)® + |2/ Qull® + (D) *u|*> < CE (u)

< C'(|® Aull® + | & Lu|* + |0/ Q ul* + (D)2 du|?),
~2 B ~2
E,w)/C < 0% Aul® + |97 LTul® + @/ Qul* + [(D)*Dul* < CE, ).

Proof ||\/Q ®ull/C < [|@/Qull < C|v/O ®u| and C||/O Pul?* > (QPu, Pu)
follow from Lemma 6.12 and (Q®u, ®u) > ||/ @ul|?/2 > ||(D)/*>®u|?/C by

Lemmas 6.8 and 4.10. Similarly l@Lfu| < C(op(b%)d)u, Qu) < C(||@Lull +
I(D)!/2®ul|). Moreover one has |[L®u| < C(|@Lull + [[(D)"/?®ul)) thanks to

Proposition 4.1 and Theorem 6.1 hence to finish the proof it suffices to note 0~ 1¢™"
S ((S))l,/ 2(/)‘”, g¢). The second assertion is proved similarly. O

Therefore Proposition 4.4 can be stated as

Proposition 4.5 There exist ¢ > 0, ¢* > 0, 89 > 0, 6y > 0 such that for |t| < 8,
0 > 6y one has 2Im(® Pou, @ Au) > 8, () + ¢ 08" ) + ¢ &; ().

4.3 Estimates of higher order derivatives

Recall that n, M, y are fixed such that the assertions in Sect. 6.3 hold with m or m; in
(4.38). For notational simplicity, we write

EUDY w) = &), E:((D)°u) = Exs(u).
Lemma 4.14 There is Cs > 0 such that
~2
@ Aul? + |OL ull} + |0/ Qul? + | Pullly,;n < Cs&; ),
~2
107 Aull} + | D*LTul} + 197V Qul} + | Pul} sy < Csépyu).
Proof The proof is clear from Lemma 4.13 and Corollaries 6.3, 6.5. O

Estimate (D)*u, s € R. Noting (D)*Py = Py(D)* + [(D)°, P] we consider
[((@[(D)*, Plu, ® A(D)*u)|. Write Py as

Py=—A’+H+ByA+B], H=op(t’+q)=op(h) (4.39)
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where B/ = op(a;), a; € S'. From Theorem 6.1 and Lemma 6.7 we can write
E)#h —h#(E) =ri+r+7, reS{E)'D. g, reSUE) b, FeS
then it is clear from Corollaries 6.5 and 6.3 that
[(@U(D)Y, Hlu, @ A(D)' u)| < C||®Aull(|OL ully + |/ Qully).  (4.40)
Similarly it follows from Corollary 6.3 that

[(@(D)*, BylAu, @ A(D)*u)| < C||® Aull?,

o ) (4.41)
(@UD)", BiJu, PA(D) u)| < C||[Pul|s||P Aulls.

Proposition 4.6 For any s € R there exist cs, 05 > 0 such that for |t| < &o, 6 > 6
one has

2Am(@ (D) Pou, ® A(D)'u) > 9, () + c,0E, () + ¢4, ().
Proof Write 2Im((b(D)‘ﬁgu, DA(D)*u) as a sum
2Im(@ Py (D) u, ® A(D)*u) + 2im(P[(D)*, Plu, @ A(D)*u)

and apply Proposition 4.4 to the first term. In view of (4.40) and (4.41), taking Lemma

4.14 into account, the term (@ [(D)*, Plu, @ A(D)*u)| is absorbed in 9532(14) choos-
ing O large. O

Proposition 4.7 Let |t| < &o. For any s € R there are Cy, C}; > 0 such that

1 ) t
Z ”Dtju(t)”s+l—j <C; <5v(u(t)) +/ 5js(u(t/))dt/)
j=0

T

] (4.42)
. t A
< c;<Z||D{u(r>||s+n+1_,~ + / ||Pu(t’>||n+sdr’)
T

j=0
holds for any u € ﬂ?zOCJ'([r, 801; H“+"+2—-/),

Proof Replacing u by e %" u and noting Ae™?" = ¢~ D;, Pge™?" = ' P it follows
from Proposition 4.6 that

2729\ @ (D) Pul||®(D)* Dyul > 3 {e > EF ()} + ce " EL (u(1)).
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If we integrate from 7 to  (—8g < T < t < §p) and noting Lemma 4.12 we have

t
E2u(t) + / E2 (' Ndr’ < CoEXu(r))

t
e / 1 But)lss | (DY Dol .
T

Denoting K = sup, -, {55 (")) + frt, Ess (u(tl))dtl} we see that K2 is bounded
by CLE2(u(t)) + CLK [ |Pu(t')||,+sdt’ hence we have

t t
&(u(t))+/ Egsu(')dt’ < Cé’(&(u(r))+/ ||ﬁu(t/)||n+sdt/)~

In virtue of Lemmas 4.12, 4.14 there exists C = C, such that
Y ID]u@®)lln1-j/C < E@t)) < C Y ID]u®)llgynri—;  (443)
j=0 j=0

from which the proof follows. O

Here consider the adjoint operator P = op(ﬁ(t, x,7,&))of P where ﬁ(t, X, T,§)
is obtained from P (¢, x, 7, &) replacing a; (¢, x, §) by a; (t, x, &). Therefore replacing
n by —n and 6 by —6 the same argument can be repeated to obtain

A~k
2% || ®_,, (D) P ul||@—n (D) Dyu

(4.44)
> =3, {e*" (€N W)} + e (E5) )
where we have set

(EH*w) = |@_n(D)* Du||* + | @, L(D) u|)?
+(QP_u(D)’u, D_y (D)’ u) + c*[[@%, (D) ul,
E52 @) = 198, Dyull? + 1197, Lull? + 97,/ Qul? + 1P_ull, 34

and <Pfﬁn = op(w*/2¢™), <P9nn = @_, and L' and /Q are as before. It is clear from
€)' < Chp < C’ that

(D) "ull/C < |@—pull < Cllull. (4.45)

Since the proof of Lemma 4.10 shows C||®_,+/Qu| > |op(w¢”(£))u| noting
(E)" < Q)" < Cwgd" by (4.4) one has

(D) Hul < Cllo_py/Qull, n=>1. (4.46)
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Integrating (4.44) over [z, ] and repeating the proof of Proposition 4.7 we have

Proposition 4.8 Let |t| < &g. For any s € R there exist Cy, C; > 0 such that

1 T

D ID u@lss1-n—j < Cs (5;‘(u(t))+ / 5;;(u<f)>d/>

. t

/=0 1 (4.47)

. T,
< C;(Z | D () lly1-; + / ||P*u<r/>||sdt/>
t

Jj=0

holds for any u € ﬂ?ZOCj([—(SO, 7]; HS1270),

5 Local existence and uniqueness theorem

In this section, we prove the existence of the solution operator of the localized operator
with a finite speed of propagation. Making use of such solution operators we prove
the local existence and uniqueness theorem for the original Cauchy problem.

5.1 Local existence theorem

We show the existence and uniqueness of the Cauchy problem for localized P.

Theorem 5.1 Let |t| < 8o, s € R. For any f € L'((z,8); H™") and ¢; €
HSt 1= (7 =0, 1) there exists a unique solution u € D}ZOCJ ([, 801; HS ') 1o
the Cauchy problem

Pu=f, t<t<8, xeRd,

; 5.1
D/u(t,x)=¢;(x), j=0,1, xeR? -1

and (4.42) holds for this solution.

Proof The uniqueness follows from (4.42). We show the existence of u. Consider the
anti-linear from

L: P i(¢o, Div(r)) +i(d1 — Bo(T)do, v(D) + | (f.v)dt

T

on {f’*v; v e CiP({(t,x);t < 80})} where By = op(ap) is given in (4.17). From
(4.47) itis seen that |i(¢o, Dyv(1)) +i(¢1 — Bo(t)do, v(1))| is bounded by

Cigolls+n+1 4 @1 lls+n) N (@l —s—n + [Dr0(T) | —s—n—1)

1 8o
Ak
< CZ||¢,‘||s+n+1_,~f |20 | —s—1d1
T

j=0
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and | ffo (f, v)dt| is estimated by

3o
sup [[0(0)]|—son / 1) llssndt

T<t<dp
) - )

<c / 1B 0@y rdt f 1O lls4ndt.
T T

Using the Hahn-Banach theorem to extend this form we conclude that there is some
u € L®([t, 8]; H*™') such that

8o 80 i
i(Go, Div(D) + i1 — Bo(@)bo, v(1) + f (f, vt = / (w, B v)dr
(5.2)
if v e C{(t,x);t < 8o}). Thus Pu = fin (1,80) x R? in the distribution

sense. Then D,ju(t) e L*([r, 80]{ Hs =0y, j =0, 1, 2 thanks to [4, Theorem B.2.9]
hence u € H}ZOCJ ([z, 80); H*77). Since v(t), D;v(t) € C(‘)’O(Rd) are arbitrary we

conclude D] u(r) = ¢;, j =0, 1. Choose ¢;, € S(RY), f, € S(R'*9) so that

T
167 — bivllssnsi—j — O, / 1f = follsndt = 0 (v — 00).
T

There is u, (1) € ﬁ?zOCf([r, 8ol; HST2-J) satisfying Pu, = f, and Dtjuu(r) =
v hence u, is a Cauchy sequence in ﬂ}.:OCf([t, Sol; H*T1=J). The limitas v — o0
is the desired solution. Clearly the limit u satisfies (4.42). m|

The Cauchy problem for the adjoint operator P” can be treated similarly.

Theorem 5.2 Let |t| < o, s € R. For any f € Ll((—§0,t); H*™) and $j €
HSH1=7 (j = 0, 1) there is a unique solution u € ﬂ}:OCJ ([—80, ); HS*177) of

A~k
Pu=f, —-6<t<r, x € RY,

. 53
D}u(r,x) =¢j(x), j=0,1, xeR? 3)

and (4.47) holds for this solution.
Study the solution operator of the Cauchy problem (5.1) with ¢9 = ¢; = O;

G L'((x.80): H*") 5 f(t) = u(t) € N_oCI([r, 8o; H''7)

where PG f = fin (z,80) x R? and the following estimate holds

1 o t
Z ID] G f(®)lls+1-j < Cs/ I f @) nssdty, T =<t < do. (5.4
Jj=0 !
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Proposition 5.1 G has a finite speed of propagation, namely G satisfies the following
Definition 5.1 withm = 2.

A conic set U ¢ R? x (R?\0) can be identified with {(x, &/|&]); (x, &) € U}, a
subset of RY x §9~1. The topology for conic sets is induced through this identification.
By U we denote the interior of U and by U¢ the complement of U and U € V means
that U is relatively compactin V.

Definition 5.1 We say that G has a finite speed of propagation if for any closed conic
set U1 and compact conic set U, with U; N U, = @ there exists 6 > 0 such that for

any /; € R and h; (x, &) € SO(R*?) with supp h; C U; one can find C > 0 such that
the estimate

m—1

. 1
Z | D} op(h2)Gop(hy) f (t)|l1—j < C11,12/ Il f(tD)lldn (5.5)
j=0 ‘
holds for any f € L'((z,T); H?)and t <t < min(z + 6, T).
We postpone the proof of Proposition 5.1 to the next section.

Definition 5.2 Let P; (i = 1, 2) be two operators of the form

1
- D} +ZOP(01)D5» aj(t,x,£) € C®((—=T,T); S*7). (5.6)
j=0

For n € R?, |n| # 0 we say P; = P, at (0, n) if there are § > 0 and a conic
neighborhood W of (0, ) such that one can write

1
Pi—Py=Y op(c)D}, cjit,x,&) € C¥([~5,8]; S NS~ (W)).
Jj=0

Before going on, we prepare a version of well-known relation on the wave front set
under the pullback (e.g. [5, Theorem 8.2.1]). If « is a diffeomorphism on R? and
U c R? x (R?\0) is a conic set we denote

K*U = {(x, %' (x)n); (k(x), n) € U}

and «* f = f(x(x)) is the pullback if f is a function on R4,

Proposition 5.2 Let « be a diffeomorphism on R which is a linear transformation
outside a compact set. Let U,V be two closed conic sets with V N «*U = @ and
h,k € SO such that suapph C U, suppk C V. Then for any p, q € R there is C such
that

llop(K)k*op(h)vll, < Cllvllg, v e HY.
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We give the proof in the Appendix.

Lemma 5.1 If all critical points (0,0, t, &) of p = 0 are effectively hyperbolic then
forany 0 # n € R? there exists Py, of the form (5.6) such that P, = P at (0, n) of
whose solution operator has a finite speed of propagation.

Proof If p(0, 0, 7, n) = 0 has a double characteristic root, which is necessarily t = 0,
and (0, 0, 0, n) is effectively hyperbolic by assumption. Proposition 2.1 with S =7
gives a diffeomorphism on R?: x > k(x).Set (Tu)(r, x) = u(t, k(x)) and let P be the
localized operator defined in Sect. 3 and denote P, = = TPT!. Since (yx),nE)) =
(x, &) in some neighborhood of (0, e4) given by (3 3) it is clear that

P,=P at (0,7).

The solution operator G of P, given in Theorem 5.1, has a finite speed of propagation
by Proposition 5.1. Set G, = TGT~! then P,Gy = I is obvious. We examine that
G, has a finite speed of propagation. Let U;, U, be closed and compact conic set
with Uy N Uy = . Choose open conic sets V; and compact conic sets W; such that
(K_l)*Uz eV, e W € Vi €W with Wi N (K_l)*Ul =Wand ¢; € SO such
that ¢; = 1 on W{ with supp¢; C V| and ¢, = 1 on V; with supp ¢, C W,. Write
op(h2)Gyop(hy) as a sum

op(h2) Top(¢2) Gop(¢1) T ~Lop(h1) + op(ha) T Gop(¢)T ~Lop(hy)
+op(h2)Top(¢$)Gop(d)T~Lop(h1), ¢ =1 — ;.

Since supp ¢ C Wi, Wi N («~1)*U; = @ and supp ¢5 C V5, UrNk*V5 = ) one can
apply Proposition 5.2 to op(¢f)T’1op(h 1) and op(h2) T op(¢5) to obtain the desired
estimates. On the other hand to estimate op(¢») G op(¢y) it suffices to use a finite speed
of propagation of G for Wy N Vi =90.

If p(0, 0, 7, n) = 0 has a simple root one can find § > 0 and a conic neighborhood
U of (0, n) and real valued A;(z, x, §) € C*°((—$6, §) x U), homogeneous of degree
1'in &, such that inf (_s5 5)x v |21 (2, x, &) — A2(t, x, §)|/|§] > O which satisfy

pt,x,7,8) = —(T + Ai(t, x,§))(t + Xa(t, x, §)). (5.7)
Taking Theorem 6.1 into account one can find 1;; € C*((-4,68) x U), j € N,
homogeneous of degree — j, such that
o0 o
P, x,t,8&)=—|1t+ X1 +Z)\.1j # r+A2+ZA2j

j=0 j=0

is verified formally. Take a conic neighborhood V € U of (0, n) and x e~S0 such that
x =1in VN {|&] > 1} and supp x C U N {|€] = 1/2}. Then there is A; € S' such
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that i,' ~ xAi+ Z?O:O xAij (e.g. [4, Proposition 13.1.3]). If we set P; = D, +op():i)
it is clear that

P=P P, at (0,n).

Since P; is a first order operator it is easily checked that there is a solution operator G;
with a finite speed of propagation (m = 1 in Definition 5.1) and consequently G2 G
has a finite speed of propagation. Then P,, = Py P, is the desired one whose solution
operator is G, = G2Gj. O

Theorem 5.3 [fall critical points (0,0, 7, &) of p = 0 are effectively hyperbolic then
there are § > 0, n > 0 and a neighborhood 2 of x = 0 such that for any |t| < & and
f e L'((t, 8); H™) there exists u € ﬁ}zon([r, 81; HT1=J0y satisfying Pu = f
in (t,8) x Qand

1 ) t
E ||DzJ”(t)||s+l—j =< Cs/ I f @) lngsdt’, T <1<8. (5.3)
T

j=0

Proof Thanks to Lemma 5.1, for any |n| = 1 there are §,, > 0, a conic neighborhood
W, of (0, n), a second order operator P, with solution operator G, with a finite speed
of propagation satisfying (5.4) with n = n;, and P, satisfying

1
P—Py=Ry=) oplcy)D]. ¢, ;€SI NS ®W,). [t| <5,. (5.9
j=0

Since {|n| = 1} is compact there are finite number of n; and aneighborhood 2 of x = 0
such that U; W, D @ x (R?\{0}). Note that G, satisfies (5.4) with n = max; ny,.
Take open conic coverings {U;}, {V;} of Q x (R4\{0}) such that U; € V; @ W), and a
partition of unity {«; (x, £)}, o; € 59 associated to {U;}. If we set Zi ai(x, &) = a(x)
then o(x) = 1 in a neighborhood of x = 0 and we may assume that «(x) has a
compact support. Define

G = Z Gy, op(a;)
i
then it is clear from (5.9) that

PGf =) (Py + Ry)Gyop() f = () = R) f (5.10)

l

where R = — > i Ry Gpop(e;). Set R = a R and we show that there are §;,8" > 0
such that

1
IRF®O5 = Cs/ IfE)llzdt’, ©<t<t+8, |t|<8 (.11
T
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for any §. Take x; € S” be 1 on V; with supp x; C W), and & € CSO(R‘[) be 1 in a
neighborhood of x = 0 with suppa € {@ = 1} and write

aRy, Gy op(e;) = aRy (1 —a)G,,op(a;)
+a Ry, a(op(xi) + op(1 — xi) G, 0p(a;)

where a(1 — @) = 0. Since one can write a#y; = k; + r;, suppk; C Wy, ki €
SO 1 e S and a#(1 — x;) = ki + Fi, suppk; C VS Nsuppa, k; € SO Fi e
S7" it is clear that ||« R, (1 — a)Gy,0p(e;) f |5, lle Ry, 0p(k; + ri)Gpop(e;) fll5 and
lle Ry, 0p(7;) G, 0p(er;) f || are bounded by

1

. t
C > 11D Gyop@) flls—ns1—; < C’ / £ @)lsdr’
T

J=0

while [l Ry, 0p(&1) Gy, 0p(@) fls < C Yo 1D} 0p(&) Gy, 0p(ei) f 1542 to which
we apply a finite speed of propagation of G, for (VS Nsuppa) NU; = @. Thus (5.11)
is proved.

Multiply (5.11) by =% (8 > 0) and integrate from 7 (|7| < 8;) to 7 one has

! / C: [! ,
/ e ||Rf(r/)||sdr/57‘ f N FA)zdl, T<t<t+8

T T

forany f € L'((z,t 4+ &); H®). Choose 6 = 6 such that C5/60 < 1/2 then Sf =
Z?io R'f converges in the weighted L' ((z, t 4 8'); H®) with the weight e~?" and it
yields

t t
/ SF 5dt’ <2 / N £ zdr. (5.12)

T T

Let B(x) € COOO(Rd) be 1 in a neighborhood of x = 0 with supppB € {a¢ = 1}.
Noting B(o — R) = B — aR) it is clear BPGSf = B(I — R)Sf = Bf hence
P(GSf) = fon{B(x) =1)L1If f € L'((zr,t + 8); H* ") then u = GSf €
ﬂ}zon([r, T +8'); HT17J/) and choosing § = s + n in (5.4), (5.12) one obtains

1 ) ¢ )
e "> D u®) 41— = C f e NSF W) lsndt’
T

j=0

t
<2 f e N F () s sndt”
T

which proves (5.8). O
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5.2 Finite speed of propagation

Here we shall prove Proposition 5.1. Write 139 in the form (4.39).

Definition 5.3 f (¢, x,£) € C®((—T, T); S°) is called to be spacelike (for f’) if there
exist 0 < 81,0 < k < 1 such that

O f =81, 4@ f)h={h, f}* (5.13)

Following [8], for a spacelike f we denote

Pt :(e)p (}/Ig,x,s», f <o 54
and set
fi=rY@pf, m=f@H (5.15)

It is clear that f, f, 8, f,m € S®and f —m#f, € S~!. Take a £ > 0 and with
ws = (8&)7F (0 < 8 < 1) we set

F® =op(ws ), F{ = op(ws f)).
It is easy to see that |3é-9 wgtl | < Cg wg“ (¢)71#1 with some Cp independent of §. In the
following, all arguments are uniform in 0 < § < 1 though we do not mention it.

Definition 5.4 Let S;(, -) be two real functionals on C>((—T, T); H*"+1). We say
S ~ S, if for any € > 0 there is C > 0 independent of § such that

118, () = Sa(t, ()| < Ce(Exg1jay @) + & (FPu)) + el @ AF}un) |2

S N
for any u(r) € C2((=T, T); H*T"*1). We write §; < S, or Sy > Sy if S1(¢, u(r)) —
S>(t, u(t)) is bounded by the right-hand side.

In the following, all constants ¢, C may depend on s but not on § and may
change from line to line. The main step to the proof of Proposition 5.1 is to esti-
mate (® (D) [F®, Pglu, ® (D) AF%u).

Lemma5.2 Let r; € SU&)igp™ g) satisfy d;r; € SWEIH 2o &) (i =
1,2,3,4). With Rj = op(r;) one has

$2 i =2s+1, T mi=2n = (Riu, Rou) ~0,

3 i =2s+1/4, £} n;=2n = (Rju, RyAR3u) ~ 0,

st =2s—1/2, £t ni=2n = (RiARyu, R3ARyu) ~ 0.
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Proof The proof is immediate from Corollary 6.3. O

Lemma 5.3 We have

(®(D)*[F°, Hlu, ®A(D)* Fou) ~ —i(op({h, f}/0; /) (D)’ Fu, ® (D)’ AF{u).

Proof Since (ws f)#h — h#t(ws f) — i{h, ws f} € S© it follows from Lemma 5.2
(®(D)’[F?, Hlu, ®A(D)* FPu) ~ (®(D)*op(i{h, ws f})u, ®(D)* AFu).

Write {h, wsf} = {h, flws + {h, ws}f. Since wsf — m#(wsf1) € S~ and
{h, flws € S then (® (D) op(i{h, flws)u, (D) AF’u) is

X (@(DY op(ith, flws)u, op(m) (D) AF{u). (5.16)

Since r = (£)#¢ "o Hm — mH#(E) HPHGT" € S((§) ¢, 2) and
{h, flws € S! it follows from Corollary 6.3 that for any € > 0 one has

|(op(i{h, fYws)u, op(r)(D) AF{u)| < Cl|®ullys1/2|®AF]ulls 5.17)
<elPAFul; + CllPully )y
hence (5.16) ~ (@ (D) op(m)op(i{h, fYws)u, ®(D)* AF u). Noting m#({h, f}ws)+

({h.
F3/8 f)#(ws f1) € S° we see that (5.16) is

X —i(@ (D) op({h, f}/3, f)Fiu, ®(D)* AFu)

this is still ~ —i(op({h, /3 )®(D) Fu, ®(D)* AF}u) arguing as (5.17) for
PTHE)H
Ah, £3/0f) — (h, £1/0 g™ #(E) € S(E) T2, g). )

For {h, ws} f setting k = {h, w(g}ws_l € S! one sees {h, ws} f — k#t(ws f) € S°

hence (®(D)*op(i{h, ws} fHu, ®(D)Y AFu) ~ (@ (D) op(ik)Fou, ®(D)* AF’u).
Since ¢ "#(E) #k — kg TH#(E) € S((E)TV2¢", 2) this is still

X (op(ik)® (D)* Fou, @ (D)’ AF°u).

Thanks to Lemma 6.7 we have {h, w(;}w(;l € S(b, g) + S(b1, g) then it follows that
(op({h, wsywy Y@ (D)* Fu, ®(D)* AF%u) ~ 0 from Corollary 6.5. o

Turn to (@ (D)*[A2, FOu, ®(D)* AF®u) which is a sum

(®(D)[A, F°1Au, ® (D) AF°u) + (@ (D) A[A, FOlu, ® (D) AF’u).
(5.18)
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Noting [A, F*] = op(if (3 fws f) € S* and m#(f >3 fHws f) — ws f1 € S~
it follows from a repetition of similar arguments that

(®(D)*[A, F*lAu, @ (D)* AF’u) ~ i||®(D)* AFu|. (5.19)
Lemma 5.4 We have

IM(®(D)° A[A, F*Ju, (D) Av) = ~3iRe(@ (D)'[A, F*lu, @(D)* Av)
+Im(@ (D) [A, F*lu, @ (D)" Av) — nRe(op(w~'¢™")(D)'[4, F*lu, ®(D)" Av)
—nRe(®(D)*[A, F*lu, op(w~'¢ ") (D)* Av) — 20Re(® (D)*[A, F*lu, @ (D)* Av).

Proof The proof is easy if we note 3,¢ = w™'¢. O

Noting A2F% = FOA? + A[A, FO1+[A, FlAand w197 € S((€)' /297", &) it
follows from Lemma 5.4 with v = F%u that

Im(® (DY A[A, F®lu, & (D) AF®u) ~ —3,Re(®(D)*[A, F*lu, ® (D) AFu)
+Im(® (D)*[A, F®lu, @ (D) F® A%u)

where replacing A2by A2 = —Py + H + B\ A + B this is still

< —0;Re(®(D)°[A, F‘S]u, @(D)SAF‘SM) —Im(@(D)°[A, F‘S]u, (D(D>SF6ﬁ9u)
+Im(@(D)*[A, F®lu, ®(D)* F*Hu)

for B = op(a;), a; € S'. We check the third term.
Lemma5.5 (@ (D)°[A, Folu, ®(D)* F*Hu) ~ i(H®(D)* Fiu, ® (D) Fiu).

Proof Sinceh € S2thisis~ (@ (D)*[A, F®lu, ® H (D)* F®u). From Lemma (6.7) and
Corollaries 6.5, 6.3 we see that [(@ (D)*[A, F®lu, op({¢p™", h})(D)* F®u)| is bounded
by Cl|®ulls+1/2E (F°u) hence this is still

X (H®(D)'[A, F*lu, ® (D) Fu) ~ (H®(D)*[A, Flu, dop(m)(D)* Fiu).

If we move op(m) to in front of [A, F 8, any term coming out in the process,
is either S(b*(£)>~1/2¢=2", g) or S(b3(£)>~1/2¢=2", &) then thanks to Corollary

6.5 such a term is bounded by 8~S2_ 1/4(u). Finally, applying similar arguments to

(H® (D) op(m)[A, F*lu, @
(D)SFl‘Su) we conclude the proof. O

Together with (5.19) we have
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Lemma 5.6 We have

Im(@ (D) [A2, F®lu, & (D) AF°u) ~ —3,Re(® (D)*[A, F*lu, & (D) AF’u)
—Im(®@(D)*[A, F®lu, ® (D)’ F* Pou) + ||@ (D)* AF{u?
+Re (H® (D)’ F{u, ®(D)* F{u).

Let « be the constant in Definition 5.3. It follows from Lemma 5.3 that

|(@(D)*[F°, Hlu, ® A(D)* F°u)|

< k||@ (DY AF{ull* + 4~ '« op({h, £}/8 f)®(D)* Full*

where, noting ({h, f}/8, /)#({h. f}/3, ) — ({h. £}/ )% € 89, the second term on

S
the right-hand side is < 4~ '~ (op(({h, £}/ /)P (D) Fju, ®(D)* F{u).In view
of (5.13) Corollary 6.2 proves

s
4~ Mop({h, f1/3, £)@(D) F{u|* < Re (H®(D)* Fju, @ (D)* F{u).
Then using Lemma 5.6 we obtain

Im(& (DY [F?, Pglu, ®(D)* AF’u)

> —3,Re(®(D)'[A, Flu, ®(D)* AF°u) (5.20)
—Im(®(D)*[A, F®lu, ®(D)* F® Pou) + (1 — k)| @ AF u?.

From Proposition 4.6 and (5.20) there are ¢ > 0, C > 0 such that

2Im(® (D)* F® Pou, @ A(D)* Fou)
> 0,62 (F*u) + ¢ 08 (Fou) + ¢ &1, (F'u)
—28;Re(®(D)*[A, F®lu, ®(D)* AF°u)
—2Im(® (D) [A, F*lu, ®(D) F* Pyu) — Ce(Eny_y 1)) + & (Fu)
+Q1 = k) — )| PAF u|>.

Choosing € > 0 and 6 such thate <2(1 —«), c6 > C. we have

. A . . ~2
Cl|®(D)*F* Poul| (I A(D) Foull + | ®(D)*ull) + CE4 ;) ) (w) 521)
> 0,62 (Fu) + 2, (F*u) — 20,Re(®(D)*[A, F*lu, (D) AF’w).
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Assume now lim; . Z;:o ||D,ju(t)||;+1_j = 0 with some [. Since &E(u(t)) <
C Z}:o ||Dtju(t)||n+s+1,j choosing ¢ so that £ > n + s — [ we have

lijn E(FPu@)) =0, 1ifn(d>(D)“[A, Folu(r), (D) AF°u(t)) =0
T T

for any 8 > 0. Since [(®(D)*[A, F®lu, ®(D)Y*AF%u)| < Céf_l /4 (u) integrating
(5.21) from 7 to ¢ (Jt| < 8g) we have

t
C [ 1F Poutt) s (19 (D AFu@l + 19D uel) i
t ot ~
+ C/ Exo1yay (u(t)d + CEL 4 (u() (5.22)
t
= gf(F‘Su(t))-}-C/ SES(F(SM(“))dtl.

One can replace E(), Sﬁs(.) and }39 by &(+), &5 (-) and Pin (5.22) if we replace u
by e~%"u. Denote

t/
_/\[SZ(u;t) = sup {gf(u(t’))—i-/ Eé(u(tl))dtl}. (5.23)

T<t'<t

Since | @ (D)* D, Foul| + [ (D)ul| < C(&*(FPu) + £/ ,(w)) it follows that
N (Flu; 1) < C{Ac?l/4<u; 1) + (Ns(FPus; 1) + Ny—1/au; 1))
t A
x f ||F5Pu(n>||n+sdn}
T
from which we obtain
t
Ny(Flus 1) < C<Ns1/4(u; 1) +/ ||F8Pu(tl)||n+sdtl>-
T

Letting 6 | O we have

Proposition 5.3 Assume f is spacelike and u € O;ZOCJ([T, Sol; H' 1)) verifies
limyye Yo 1D/ u(®)llig1—; = 0. Then if Ny_yja(us 1) < +00, T < t < & and

FPu e L'([z, 801; H" ) with F = op(f) one has Ny (Fu; t) < +o0fort) <t < 8
and

t
Ny(Fust) < C(Ns—l/4(u: 1) +/ ”Fﬁu(tl)”n+sdt1)~ (5.24)
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Let x(s) € C*°(R) be nondecreasing such that x (s) = s for |s| < 1 and |x(s)| = 2
for |s| > 2 and let 0 < ¥(£) € C®(R?) be 0 in a neighborhood of the origin and
% = 1for|£| > 1. Forw = (y, n) € R? x (R4\0) we set

de(x.6:w) = {0 20 — ) + X©[&/18 — /Il + 22,

Note that dZ(x, &; w) > min {1, |x — y[*} + |£/I&] — n/In||* + €* for |§] = 1. We
often write d¢ (x, &) for d¢ (x, &; w) dropping w. It is clear that d, € $Yif € # 0. For
v > 0 we define

fe@t,x, & w) =t — 1 —2ve +vde(x, &; w). (5.25)

It is easy to see that |8;‘8£d5| <CE Pl (a+Bl=1)withC >0 independent of

€ >0.From0 < h € G(M~2(¢)2, G) one has {h, vd.}*> < Cvzq in virtue of the
Glaeser inequality then there is vo > 0 such that fc is spacelike for any 0 < v < v
and € > 0. We fix such a v > 0 and denote F. = op(f ).

Lemma 5.7 Assume that u € N}_,CJ([t,80); H'*'7)), Pu e L'([x,8); H') and

limy e 4o 1D/ u(®)l1+1-; = Owith some 1,1 € R If Foy Pu € L'([7, 8o1; H**")
with some € > 0,50 € R thenfor any 0 < € < €gand s < so — 1/4 one has
Fou e m}ZOCJ([r, Sol: HM'77Y and

1 ) t '
> ID! Feu®)s41-j = C / ||F€0Pu||n+sodn+C<Rl<u;r>+ / IIPullz/dt1>
j=0 T T

where Rj(u; ) = sup, <<, Z;:()(”Dz]”(t/)”l—s—l—j + f,t I D] w(tr)lli1—jdt).

Proof Choose a strictly decreasing sequence € < €; < € convergingto € as j — 0o.
Denoting Fj = Fe;, fj = fe; we shall prove

Nitja(Fjust) < CRy(us 1)

¢ ~ R (5.26)
e / (1 Fo BuC) g + 1 Pt )y
T

for j with [ + j/4 < so by induction on j.Take g; € S% such that supp g i C
{fj <O}and {f;j+1 <0} C {g; = 1}. WriAte Fji1Pop(gj)u = Fjiiop(g;)Pu +
Fj ([P, op(g;)]u then it is seen that || Fj 1 Pop(g;)ulli+ni(j+1)/4 is bounded by

1
C{llFoPullinsirnsa+ Y ID] ullivi—j + Il Pully}
Jj=0
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hence an application of Proposition 5.3 with s =1 + (j + 1)/4 < s0, F = Fjy1,
u = op(g;)u gives

Nig(j+1)/4(Fjrrop(gju; 1) < CNiyja(op(gju; 1)

t
+C/ {I1Fo Pu(t) llntsodts + || Pue) ||y }dry
T

+CRy(u; t). (5.27)

Repeating similar arguments one has N4 j/4(op(gj)u;t) < C{J\/;+j/4(Fju; 1) +
Ri(u; 1)} and Nip(j1y/a(Fjpu; 1) < C{Nip(js1y/a(Fjpr0p(gj)us 1) + Ry(us 1)}.
Estimating N j/4(op(g;)u; 1) by use of the inductive hypothesis we conclude that
(5.26) holds for maximal j = jo satisfying [ + j /4 < 5. Since € < €, one can write
fe - k#fjo € §~ with some k € S the assertion follows. O

Proof of Proposition 5.1 Take 0 <e€e< 1/4suchthat 16 €2 < |x—)2|2—i—|§/|$|—§/|,s§||2
holds for any (x, &) € U and (X, §) € Uy.Fixa0 < vy < v then there are finite many
w; = (y;,n;) € Uz, i =1,...,n such that

Up CUL {fe(t +vie, x, & wi) = —2v — vi)e + vde(x, §; wy) < 0.

Write fi e = fe(r,x, & w;), Fie = op(fi’é) then it is clear that ) ; fi < O on
[t, T 4+ vie] x Uz, while {fi2(¢t,x,&) = t — 1 — 4ve + vdae(x,&; w;) < 0}
does not intersect with [t, T + vie] x (U; N {|€] > 1}). Therefore it follows that
frt | Fi peop(hy) fll pdt; < Cfrt | flldty for any p € R.Here we apply Lemma

5.7 with u = Gop(h1)f € N}_oC([r, 8] H2™"'7)), Fey = Fioe, Fe = Fic,
| =1, —n,l' =1, to obtain

1

. . '
S D] FrGoplhn) fllgr—j = c/ {IFs 2cop(a) £
T

= (5.28)

+ [lop(h1) flli, }dt1 + Rp,—n(Gop(iy) f: 1)

for any p,s € R, s < p —n — 1/4. From (5.4) one has Rlz_n(éop(hl)f; 1) <

C [Hllop(hy) f ll,dt hence 3°5_ 1D} Fi eGop(hy) flii,—; < C [L 11 fll,dtr choos-
ings =1 —land/; < p —n + 3/41in (5.28). Then Proposition 5.1 is proved if we
remark

1 1 1
> 1D} oplho)vlly—j < €YY D! Fievlly—j + C Y _IID}vlliyni1-j

Jj=0 Jj=0 i J=0

and take v = Gop(hl)f there. O

For the solution operator of the Cauchy problem (5.3) with ¢g = ¢1 = O;

G L' (=80, 1) H™™) 3 f(1) > u(t) € Nh_oCI (=80, T); H* )
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the same argument for G proves that G has a finite speed of propagation. Then
repeating the proof of the local existence theorem for P one obtains

Theorem 5.4 If all critical points (0, 0, T, &) of p = 0 are effectively hyperbolic then
there are § > 0, n > 0 and a neighborhood 2 of x = 0 such that for any |t| < §
and f € LY((=8, t); H*t") there exists u € O}ZOCJ([—S, t]; H¥H70) satisfying
P*u= fin(-68,t) x Qand

1 . T
D ID u@lsr1-j < Cy / Lf @) lngsdt’. =8 <t <1
t

Jj=0
5.3 Local uniqueness theorem

Consider the second order differential operator

P =op(—t>+ Z ajq(t, x)E%T)) (5.29)
JHlal<2,j<2

with the principal symbol

plt,x,7,6) = -1+ Z ajot, x)E%T/

jHal=2,j<2

where a; (¢, x) are C* functions defined in a neighborhood of (¢, x) = (0,0) €
R!*4_ For notational convenience we write xg, & instead of 7, T and denote x =

(x0, X1, -+, Xg) = (x0,x"), & = (§0,&1,...,80) = (60, &). Let y = k(x), x(0) =0
be a change of local coordinates x then, in y coordinates, the principal symbol p(y, 1)
of P is p(k~(y), ' (x)n).The following lemma is a special case of a well-known
fact (e.g. [14]).

Lemma 5.8 If (0, &) is effectively hyperbolic characteristic of p then (0,7), & =
'’ (0)7 is effectively hyperbolic characteristic of p and vice versa.

Proof Denote K‘l(y) = A(y) and «(x) = (ko(x),x1(X),...,Kkq(x)).If Q is the
quadratic form associated with the Hessian of p then we have

pley, il +en) = p(er (0)y + O(€?), & +e(Cy + i’ (0)n) + O(€?))
=20 (0)y, Cy + k' (0)n) + O(’) (e — 0)

where C = (¢;;) is the (d + 1) x (d + 1) matrix

cij= Y (9%(0)/0x10x:)(924(0)/dy;)ie.

0<k,<d
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Therefore denoting by Q the corresponding quadratic form of p at (0, 7}) one has

- _(¥©O) o
0 ='KQK, K—< C tK/(O))'

Checking that C«’(0) is symmetric one concludes that F 50,7 =K -lp »(0, é)K
hence the assertion. O

Next, consider a new system of local coordinates y such that

d

Yo=Xo+ey xj. yi=ux;, j=12....d (5.30)
j=1

which is so called Holmgren transform (e.g. [15]) where € > 0 is a small positive
constant that will be fixed later. It is clear that

pum) = pGo—ely' 12,y no, ' + 2en0y)). (5.31)

The following lemma is also well-known (e.g. [21]).

Lemma5.9 If p(x, &y, &) = 0 has only real root in & for any x in a neighborhood
of the origin of R'™¢ and &’ € R? then there exist r > 0 and €y > 0 such that for any
le] < €, p(y,n0,n") = 0 has only real root in ng for any |y| <r andn' € RY.

Lemma 5.10 One can find a neighborhood 2 of the origin of R'™¢ and é > 0, ¢ > 0
such that for any f(x) € C3°(2) with suppf C {x;xp < € — €|x’|?} there exists
v(x) € C2(Q) with suppv C {x;x0 < € — €|x’|?} satisfying P*v = f in Q.

Proof Since P* = op(p + P1 + Pg) then P* in the local coordinates y is given by

P* = op(p + P{ + P).Thanks to Lemmas 5.8 and 5.9 one can apply Theorem 5.4
to conclude the assertion. O

Now prove the local uniqugness theorem. Assume that u(x) € C%(S2) verifies Pu = 0
in Q N{xg > 7} and Déu(r, x)=10,j =0,1on 2N {xg = 7} (J]7| < &).For
f e Co() with suppf C {x;x0 < € — €|x’|?} take v(x) in Lemma 5.10 then one
has

e ¢ ¢
0= / / Pu - vdxodx' = / / u - P*vdxodx' = / / u - fdxodx'.
 JRd 7 JRA T JRI

Since f is arbitrary we conclude u = 0 in {x; T < xo9 < € — €|x’|}. Returning to the
original notation xo = ¢, (xg, x’) = (¢, x) the assertion can be stated as

Theorem 5.5 Assume that all critical points (0, 0, t, &) of p = 0 are effectively hyper-
bolic. Then there are a neighborhood w of the origin and € > 0 such that ifu € C*(w)
satisfies (|t] < €)

Pu=0, on{t>rt}
D,ju(r,x)=0, j=0,1, xeonN{t=r}
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thenu =0inwN{t > t}.
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6 Appendix

In this appendix, we summarize the properties of the pseudodifferential operators used
in this paper and also give the proof of Proposition 5.2.

6.1 Pseudodifferential operators, composition, L2 continuity and inverse

In this paper, all metrics are supposed to be of the form

g(w) = /@ + n* /¥ ()2, z=(x,&), w=(y,n R xR (6.1)

(Beals-Fefferman metric [1]) where ¢ (z), ¥ (z) are positive functions on R2d depend-
ing on positive parameters y, M constrained by

y>M'>1.

For notational simplicity, we omit to write parameters in ¢, i, and all constants
assumed to be independent of parameters y, M in what follows, although we do
not mention this. Recall several notions related to Weyl-Hormander calculus from
Hormander’s book [4, Chapter X VIII]. For a positive function m (z) we define S(m, g)
the set of all a € C*°(R?4) such that for every k € N

sup  [0%a(2)| /m() [ g2 () < 00, 8% =T ok, |ul=1.

7eR% qeN2 |o|<k

(6.2)
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The left hand is denoted by |a|(5k()m 2) which induces the topology in S(m, g) as a
Fréchet space. Denote

h(z) = sup g:(w)/gf(w) <1, zeR™ (6.3)

weR?"

where g7 (w) = SUPyer2e |0 (W, v)|?/g(v). For a metric (6.1) it is easy to see

(W) = ¥ (22027 g(w), g:/87 =V () (). (6.4)

A metric (6.1) is o temperate (see [4, Definition 18.5.1]) if there are positive constants
¢, C, N such that

g(w—2)<c=1/C <¢@)/Pp(w), ¥(2)/¥(w) <C, (6.5)
P(2)/Pp(w) + ¥ (@) /Y (w) <CA+g5@z—w), z,weR¥ . (6.6)

Note that (6.6) implies
gw—2<CU+glw—2)", zweR¥ (6.7)

which is symmetric with respect to z, w. Let g be o temperate metric. A positive
function m(z) is called o, g temperate weight (see [4, Definition 18.5.1]) if there are
positive constants ¢, C, N such that

g (w—2) <c=m(z)/C <m(w) <Cm(z), w,zeR™, (6.8)
mw) < Cm@)(1 + 5w — )", w,zeR¥. 6.9)

Note that (6.9) is equivalent to m(w) < C'm(z)(1 + gl (w— z))N/ because of (6.7).
This paper uses more restricted weights than o, g temperate weights.

Definition 6.1 Let g be o temperate metric. A positive function m is called g admis-
sible weight if there are positive constants C, N such that

m(w) < Cm(z)(1 + max {gu(w — 2), g-(w — z)})N, w,z e R, (6.10)

It is clear from the definition that if m is g admissible weight then m is also g
admissible weight for any o temperate metric g > g.

Lemma 6.1 Let g be o temperate and satisfy (6.3). If m is g admissible weight then
m is o, g temperate weight.

Proof If g.(w —z) < c one has m(w) < C’(1+c C)m(z) in view of (6.5) and (6.10).
Since max {g, (w — 2), g;(w — z)} is symmetric for w, z one concludes (6.8). Noting
max {gy(w — 2), gz(w — 2)} < max {g7, (w — z), g7 (w — z)} by (6.3) we have (6.9)
from (6.7). O
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Lemma 6.2 [fm is g admissible weight so is m*® forany s e R. If m; (i = 1,2) are g
admissible weights so is mmy.

Proof Since 1/m is g admissible weight by (6.10) then the first assertion is clear. The
second assertion is also clear by (6.10). O

In this paper we work with more restricted metrics (6.1) which satisfies with some
0 <6 < landc > 0 that

€ <SeS1, vSE),, oY=, (6.11)
& —nl/(§)y <c= 9@ = Pw), ¥ ()~ y(w). (6.12)
Lemma 6.3 A metric (6.1) satisfying (6.11), (6.12) is o temperate and satisfies (6.3).

Proof If g,(z — w) < c% then |§ — n| < c1¥(z) < c1C(§), so0 (6.5) is immediate by
(6.12) choosing ¢1C < ¢.If (n), < (£),/2+/2then [§ —n| > (v +|E) — (v + n]) =

(€)y —~/2(n), = (£), /2 which gives | —n| = (&)} (n)} with some ¢ > 0.On the

other hand if (1), > 2v/2(§), then |§ — 1| = (1), /2 hence |§ — n| = c(n), > (m)?.
Therefore there is C such that

&)y [y + )y /E)y < C(L+ ;01 —ul) /"™ £.neR! (6.13)

Note that g5 (z — w) > »*(w)|E —n|*> > (n);z‘slé — n|%/C which proves (6.6) while
(6.3) is obvious by (6.4) and (6.11). O

Lemma 6.4 All metrics g, ge, § in (4.1) satisfy (6.11), (6.12) and (E)‘;, seRisg, g
g admissible weight.

Proof Indeed (6.11) is verified with § = 1/2.If |§ — 5| < c(&), . Here we remark that

& —nl < clE)y = (1 =)&)y /N2 < (n)y V20 +0)(E)y.  (6.14)

which proves (6.12). Next since |8§‘ (§)y| < C for |a| = 1 we see that

(& + 1)y — (E)y] < Clul < CLE, (&), D < CE)y g2 w) (615

hence (¢ +n), < C{), (1 + gz(w))l/2 which shows (§), is g admissible weight
hence the assertion because g=<8 < g. O

We state the main theorem of the Weyl-Hormander calculus [4, Theorem 18.5.4] for
the present case.

Theorem 6.1 Let g satisfy (6.11), (6.12) and m; be g admissible weights and a; €
S(m;, g). Then the oscillatory integral

x / e 2 g (2 + v)ar (z + w)dvdw (6.16)
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defines c(z) € S(mimy, g). Denoting c(z) by a\#ay one has
op(aj)op(ax)u = op(ai#tar)u, Yu € S
and for every | € N there are C, I such that

o) o
vl o = Clatlsen, gla2lson, o (6.17)

Moreover if 9¢ 85(1[ IS S(mfa, g) for g admissible weights mfa for la + B| =1 we
have

G
al#az — Z mag 3“(11 35 az S Z m] am2ﬁ g)
la+pl<l la+Bl=l

In particular with | = 3 one has

ar#ar — arttay +ifay, ar} € Z S(m’ls’amg’ﬂ, g).
le+B]=3

The theorem can be proved in a naive way (repeated use of integration by parts)
taking into account the special features of such restricted metrics satisfying (6.11),
(6.12) and weights given by Definition 6.1, or keeping that the “structural constants”
of the metrics and weights are independent of parameters y, M in mind, it suffices to
follow the general proof in [4, Theorem 18.5.4] or [13, Theorem 2.3.7].

Corollary 6.1 Ser h*(z) = sup 8:/83 then for any N € N we have

(=D p N
arttar — Z Wa”* 0%ay 0gdfar € S(WVmima, g).  (6.18)
lo+Bl <N

In particular we have
ar#ay — axtta) — {a1, ax}/i € S(h3mim, 2,
ar#tar + arttay — 2ayas € S(h*>mymo, g), (6.19)

ar#tar#a) — aza% € S(hzmzm%, g).

Noting again that “structural constants” of the metric g is independent of y it follows
from the proof of [4, Theorem 18.6.3] or [13, Theorem 2.5.1] that

Theorem 6.2 The operator op(a) is L* bounded for every a € S(1, g). Namely there
exist C > 0, £ € N depending only on the dimension d such that

£
llop(@ull < Clal§) 4 lull, ueS.
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Similarly, following the proofs of [13, Lemma 2.6.26] and [13, Theorem 2.6.27] or
[12, Theorem I.1] we have

Theorem 6.3 There exist C > 0, 1° € N such that if a(x,€) € S(1,3) satisfies
|a|(Sl(1) 5 = C! then

b(x,£) = Z Ha = Za#f

j=0

converges in S(1, g) and satisfies (1 — a)#b = b#(1 — a) = 1. Moreover for any [
there are C;, I’ such that

1
|b|fg()1 2 = = Cl|a|5(1 2" (6.20)

6.2 Admissible weight related to nonnegative symbols

Let 0 < a(x,§) € S(M~%(§);, G) where G is given in (3.5) and M, y are con-

strained by (3.1). Since M1¥+1(5), 1Pl < (M2(); Hle+FI/2(£) 17172 it s clear
that S(m, G) C S(m, g). Introducing a parameter A > 1 which is constrained by

AM? <y, A>1 (6.21)
we consider an approximate square root of a;
bx,§) = (a(x, &) + 1(5),)"/. (6.22)

Lemma6.5 We have 020 b*! € SG.V/2(E))" P2 b1 2) for o + | = 1. In
particular b*' € S(b*!, ).

Proof Set a = a(x,£)(§),” and b = (@ + 1(€); 1)/ so that b = b(£),. In the
proof we often use (bA~ 1/2)k = <§>yk/2 (k > 0) which follows from CM~! > b >
)\1/2(&) 1/2

.Since @ € S(M~2, G) the Glaeser inequality shows
agafal £ 6);PVa 5 &), PVaE R ek Bl =1 (6.23)
while it is clear that
007 1), | < AE);, 3 (E)y (et PIm D2 ) (el =IPD/2, (6.24)
Noting Va < b it follows from (6.23) and (6.24) that

9%0L b1 < 1029F @ + A, 1) /6] S AT VHE) 2 b o 4 g =1,
(6.25)
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Assume (6.25) holds for 1 < |a + 8| < . Since b” = a + A(&); ! then for |a + B| >
I+ 1>2wesee

bocalb= > c.o¥elb-a"al b+ o%ela v aralnE),!  (6.26)
O<la/+p'|<l

where the second term on the right-hand side of (6.26) is estimated as

|a?3é8&| < M2 letBl <§);|ﬁ|

. 6.27)
5 (MZ<§>;1)(Iot+/3\—2)/2(S);Iot\—lﬂl)/Z S b A—1<s)ga|—|ﬂ|)/2

To estimate the third term it suffices to apply (6.24). Therefore we conclude from
(6.26) that (6.25) holds for |« + 8| =/ + 1 and hence for any «, B. The assertion for
b follows immediately from (6.25). The estimate for b~! can be obtained from those
of b by differentiating bb~! = 1. O

Lemma 6.6 b is g admissible weight and b*' € S(b*!, g).

Proof Since (£), is g admissible weight it is enough to prove that b is g admissible
weight. Note that [8297 5| < (), for | + | = 1 in view of (6.23) and (6.24). If

[n] < c(&), then from (6.14) there is C > 0 such that
(§+sm)y/C <(§)y <CE+sm)y, IsI<1 (6.28)

hence one has

bz +w) — b()| < C(yl+ (&), D < C(&); 28> (w) < Ch(2)3:* (w)
which proves
b(z+w) < Chz)(1 + g, (w)'/? (6.29)
when [5] < ¢(&),.If n] = (&), then g.(w) > c*(§), one has
b(z+w) < C < Ch(2)(§),/* < C'b(2)(1 + g, (w))'/?
so that (6.29) holds. Thus b is g admissible weight. o

Proposition 6.1 One can find 11 > 1 independent of M and y such that for » > iy
there exists b € S(b™! , 8) satisfying b#b = b#b = 1.

Proof Since b*! € S(b*', 2) and 920Lb*! € SGL12()y TPV 2pEL g) for o +
B| = 1 by Lemma 6.5 and b*! is g admissible weight then thanks to Theorem 6.1 one
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has b#b~! =1 — r with r € S()Fl/z, g). Therefore there is A such that for A > A4
one can apply Theorem 6.3 to obtain

o
Fe, &)=Y r"esa, g
and that b#(b~'#7) = 1. Similarly t}lere exists 7 € S(1, g) such that b H#D = 1
which proves (b~ '#7)#b = 1. Thus b = b~ '#7 € S(b~', g) is a desired one. O
Lemma 6.7 We have a € S(b°, §) and 8¢9 a € S(b(&), . g) for |o + B| = 1.

Proof Since (§), € S (b, g) is clear for (€)y < b? the first assertion is obvious. Note
thatif & € S(M %), G) noting b > (£),/* one has

928 al < M1 RHatPlg) IRl < ppk (a2 g ) (e HPIm DI 630
x (£ 12 g) Y =IBD/2 < pp ki) i) Q1B 4 ) 2 1

For o + B| = 1 we have [9%0fa| < Cb(&),”"! from (6.23). For o + f| > 2 it is
enough to apply (6.30) to & = 8% as aesSM1 &Y G+ 8] =1. o

Lemma 6.8 There exists Ay > A1 independent of M and y such that for A > Ly one
has

(op(a + A{E)y)v, v) = (op(bH)v, v) > llop(b)v[?/2, v € S.

Proof Noting 8"‘8‘917 € S(A_I/Z(S)(lal_lﬁl)/zb g) for o + B| = 2 in virtue of Lemma

6.5 it follows from Theorem 6.1 that b#b = b*> +r, r € S(A~1b?, 8)- Taklng be
S, %) in Proposition 6.1 we set r = = b#(b#ri#b)#b. Since b#tr#tb € S()F , 8),
thanks to Theorem 6.2, there exists C > 0 independent of A such that ||0p(b#r#b)v I <
Cx~Y[v|1?, hence |(op(r)v, v)| < CA~!jop(b)v||>. Then we see

(op(b*)v, v) = [lop(b)v]|* — (op(r)v, v) = (1 — CA™H|lop(b)v]*.

It is enough to choose Ay > Aj sothat 1 — Ciy < 1/2. O

Let (&) stand for (£),, with y = 1. The following inequality is called sharp Garding
inequality ([2]).

Corollary 6.2 If0 < a(x, &) € 57, there is C > 0 such that

Re (op(a)u, u) > —CI[(D)"?u|?, ueS.
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Proof If we fix M = landy > A then0 < a € S((E))Z/, G) hence one can apply
Lemma 6.8 with A = A, to get

(op(a)v, v) = [lop((a + A2(€),) v /2 = 22 l(D),/*v]* = —C||(D)?v|?
which is the assertion. O

6.3 Pseudodifferential operators associated with metrics related to localization

In this subsection we study pseudodifferential operators associated with metrics g
satisfying (6.11), (6.12) and

g/8° <M, Mg <g<s. (6.31)

Lemma 6.9 Let m be g admissible weight such that m € S(m, g). Then there exist
Mo > 0andk € S(M™', g) (M > My) such that

m#m#(1+ k) =1, (1+k#m#m™ =1, m #(1 +k#m = 1.

Proof Since m~! is g admissible weight and m~! € S(m~!, g) one has m#m~' =
1 —r withr € S(M~L, g) C S(M~L, g). Thanks to Theorem 6.3 there is My such
that Zfil r# converges in S(1, g) to some k € S(1, g) for M > My so that (1 —
r#(1+ k) = (1 4+ k)#(1 — r) = 1 which shows the first two equalities. It remains to
prove k € S(M~!, g). It suffices to show

0%k e S(M~ [, 2. 82 =[]0, Il=1. a e N (632)

From (6.20) one sees that k € S(M ™!, g) so that (6.32) holds when || = 0. Suppose
that (6.32) holds for |@| < [ and consider the case |@¢| = [ + 1. Since k verifies
k = r + r#k one has

0k =02r+ Y Corar(@Xr#O k).
o' 4o =a

When |o”| = |a| = + 1 we have 0%k € S(M~'g}%(s) [Tg}%(t), §) where 3% =

95 T10%, 151 = 1and M~'g}%(s) < g2/%(s) by assumption. Thus we have r#(3%k) €
S(M T g% (1), 3 with 8 = []9%, 4] = 1. When |a”| < [ the assumption (6.32)
shows that (9% r)#(0% k) € S(M~2 [ g2"*(41), g) with 8% = [] 0% . Therefore (6.32)
holds for || = [ + 1 and hence k € S(M~', g) by induction on |«|. Similarly there
isk € S(M~!, g) such that (1 4+ k)#m~'#m = 1 (M > M) which proves the third
equality. O
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Lemma 6.10 Let m; (i = 1, 2) be g admissible weights such that m; € S(m;, g). If m
is g admissible weightanda € S(mmmy, g) then there exist My > Oanda € S(m, g)
(M > My) such that one has a = m#a#my. Moreover if m is g admissible weight
then a € S(m, g) is given by (mim2)~'a +rwithr € S(M~ i, 92).

Proof Since ml._1 are g admissible weights such that ml._1 es (ml._l, g), Lemma 6.9
gives k,k € S(M~', g) (M > M) verifying m#(1 + k)y#m ;' = 1 and m; "#(1 +
ky#my = 1. Thena = (14+-k)#m| ' #a#tm; #(1+k) € S(, g) is adesired one. If i is
g admissible weight it follows from Corollary 6.1 thatd— (mymy)"'a € S(M’ln"a, g).

O

Lemma 6.11 Let m; (i = 1,2) be g admissible weights such that m; € S(m;, g). If
m is g admissible weight and a € S(mmm», g) ora € S(mmy, g) there are My and
a e S(m, g) (M > My) such that the followings hold for M > M

|(op(@)u, v)| < llop(@)op(mp)ul/[op(m2)v],
lop(a)ull < [lop(@)op(mi)ul.

Moreover if m is g admissible weight such that m € S(m,g) then with a =
(mim2)~"la € S(m, g)ora= mf]a € S(m, g) the following estimates hold

|(op(a)u, v)| < lop(@)op(my)ul|[lop(ma)v]|
+CM " Jop(m)op(my)ullllop(ma)vll,
lop(@)ul < llop(@)op(m)ul| + C M~ op(m)op(my)ul|

for M > M.

Proof The first two assertions are direct consequences of Lemma 6.10. If m is
g admissible weight with m € S(m, g) one can write a = mo#(a + r)#m
with r € S(M~'m, g) by Lemma 6.10 from which it follows |(0p(a)u, v)| <
llop(@ + r)op(m1)ull|lop(ma)v|. Writing r = F#m, 7 € S(M~', g) with use of
Lemma 6.10 one has [Jop(a + r)v| < |lop(@)v|| + CM ~'|jop(m)v| thanks to Theo-
rem 6.2. Taking my = 1 in this proof one obtains the last assertion. O

Corollary 6.3 Ifa € S((§)ymim2, g) and s1 + 52 = s then
[(op(a)u, v)| < CI(D)y op(m1)ullll{D);op(m2)v].

Proof Write a = (£)#a#()! with @ = (£); #a#(£),” € S(mymy. g) and apply
Lemma6.11tod to get|(op(a)u, v)| < Cllop(m1)(D) ulllop(m2)({D); v|. The right
hand-side is bounded by C||(D)} op(m1)ul|[|{ D)y} op(m2)v]|| with use of Lemma 6.11
again. O

Corollary 6.4 Let m be g admissible weight withm € S(m, g). Then there exists C > 0
such that (op(m)u, u) > (1 — CM~ 1) |lop(/m)u|>.
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Proof Since /m is g admissible weight such that \/m € S(i/m, g) one can write
m = Jm#(1 + r)#y/m with r € S(M~!, g) from Lemma 6.10 and the rest of the
proof is clear. O

Lemma 6.12 Let m; be g admissible weights with m; € S(m;, g) (i = 1,2). Let w
be g admissible weight with w € S(w, g) for which there exists W € S(w™', g) such
that w#w = w#w = 1. If m is g admissible weight and a € S(mmimaw, g) there
exist My and a € S(im, g) (M > M) such that the following estimates hold

|(op(@)u, v)| < [lop(w)op(m)ul/[op(@)op(ma)v],
llop(@)u|l < [lop(a)op(m2)op(w)op(m)ull
for M > My. Ifa € S(mlmzwz, g) one has
|[(op(@)u, v)| < Cllop(w)op(m)ull[lop(w)op(ma)v]l, M > M.

Proof In virtue of Lemma 6.10 one can write a = mp#a#m; with a € S(mw, g).
Write @ = (a#w)#w with use of w € S(w™!, g) where a#i € S(m, g) hence the
first assertion is proved. Noting mo#(a#w) € S(mmy, g) this can be written as a#m,
with a € S(m, g) thanks to Lemma 6.10 which proves the second estimate. The last
estimate can be obtained by taking m = w in the first estimate and applying the second
estimate to it. O

Corollary 6.5 Leta € S((é)‘;mlmzw, g)ora e S((E)‘;mlmzwz, gandsy+s2=s
then one has

|(op(@)u, v)| < CII{D)} op(w)op(m)ull[[{D)}; op(m2)v],
|(op(@)u, v)| = CII{D)}} op(w)op(m1)ull[[{D)};op(w)op(m2)v].

Proof Writing a = (&§)y#a#(£); it suffices to apply Lemma 6.12 to a €
S(mimow, §) orda € S(mymow?, g) and repeat the proof of Corollary 6.3. O

Next, consider pseudodifferential operators associated with the metric G.

Lemma 6.13 Ifa € S(1, G) satisfies a > c with some c then there is C > 0 such that
(op(@u, u) = (¢ = CM ™) [lull®. (6.33)

Proof Considering a —c one may assume ¢ = 0. From 0 < a € S(1, G) it follows that
0%a] < CM? and [3{a| < CM?(g);? for || = |B| = 2 then we have [3¢9]a| <

cMg), ) IR g < e ) \*TIPV2 /G for |+ B| = 1 by the Glaeser
inequality. With b(x, &) = (a(x, &) + M~ )1/2 > M~1/2 we see

agagbl < e NI agh < e )T P, a4 gl = 1.
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Differentiating b> = a + M~ one has

16328 b| < 3 028 bl102" 8 bl + 1920 al.
0<lo/+B' | <la+B|

Noting M~! < b? one can prove by the induction on |o + ] that
10200 b| < CopM 12 HPV2(g) (e1=1AD /2, (6.34)

We now show that b is g admissible weight. To do so it suffices to repeat the proof of
Lemma 6.5, namely when |n| < (§), /2 one has

bz +w) —b(2)| < CM~ 25! (w) < Ch@)(1 + g.w)'? (635
and if ] > (§), /2 noting g, (w) > (§), /4 > M*/4 one has
b(z+w)| < C<CMV2MY? < Ch(z)(1 + g, (w))"/3. (6.36)

Thus one can write a + M~! = b#b + r with r € S(M~2b*,5) C S(M~2,2) in
virtue of (6.34) and Theorem 6.1. Applying Theorem 6.2 to op(r) to obtain

(op(a + M~ Myu, u) = [lop(b)ull* + (op(r)u, u) = —CM2|u|*
which proves the assertion. O
Corollary 6.6 Ifa € S(1, G) there is C > 0 such that
llop(a)ul| < (sup la| + CM ™) |u].

Proof Note that |[op(a)u|®> = (op(a#a)u,u) and a#a = |a|*> + r with r €

S(M*(&),!', g) by Theorem 6.1. Since M?(£),! < M~ it suffices to consider

(op(Ja|*)u, u). Applying Lemma 6.13 to (sup |a|)? — |a|> > 0 to get
(op(jal®)u, u) < ((sup la])*> + CM M) < (supla| + CM~"/2)2|ju|?
which ends the proof. O

6.4 Proof of Proposition 5.2

For a conic set U ¢ R? x (R?\0) we denote 7(U) = {x € R?; (x,&) € U} and
U; = {£ e R\0; (&, £) € U}.Itis clear that

' (x)Uy = (K*U)x (v = k(x)). (6.37)
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We may assume that k(x) = Ax for |[x| > R > 2 with a nonsingular d x d matrix
Alet x(x) € Cgo(Rd) be 1 for |x| < R and O for |x| > R+ 1.Write op(k)x*op(h) =
op(k)(x + (1 — x))x*op(h) then op(k)(1 — x)x*op(h) = op(k)(1 — x)op(ha)k*
where hy = h(Ax,‘A_lé‘).Since k#(1 — y)#hs € S~ it suffices to consider
op(k#y)k*op(h). Theorem 6.1 gives ky, € §9 with compact support such that
k#x — ky, € S~ for any Ny hence it is enough to consider op(ky, )« *op(h).With
() = x (k™" (x)) and writing op(ky, )k*op(h) = op(ky,)k* (% + (1 — %))op(h) it
follows from the same argument that it suffices to consider op(ky, )k * x op(hn,) with
hy, € S° with compact support such that y#h — hy, € S~V2.Thus one can assume
that U, V are compact conic sets.

Lemma 6.14 Let U be a closed conic set and T C R\0 be a closed cone with
Uz NT = @.Then there exist a neighborhood w of X and a closed cone T' > T such
that for any a(x) € C{®(w) and h € SO with supph C U and p,q € R there is C
such that

Flop(hav) ()| < CA + [EDIlvlly, E€T, ve HI.
(6.38)

| F (e op(h)v)(£)

)

Proof One can take a compact neighborhood w of x and a closed cone [ 5 I with
(w x T') N U = ¢ such that the following holds with some € > 0

tel, (,men N o)NU = |£ —n| > e(&] + Inl). (6.39)

Let a(x) € C{°(w). For any m € N there is hy,, € S with supph,, C 7~ w) NU
such that a#h — h,, = r,, € S™™. Since

F(oplhm)v)(E) = 7~ / HE g (e )P @0 — E)dxdy  (6.40)
using e~ 2XE= = (g — ) 72N (D, /2)2N ¢=2x(E=) jntegration by parts shows
|F(op(hm)v)(£)] < C / (& — )N UDL/2)*N By (x, 110210 — £)|dxdn

where the right-hand side is bounded by that of (6.38) if & € [ because of
(6.39).Replacing hy, by ry in (6.40) and noting |(Dx/2)2Nrm(x, nl < C1 +
lxD) =411 + |p)~™ it follows from integration by parts

|F(op(rm)v) (&) < Ch /(1 +1& =N A+ )" 2n — £)|dn
<Cp /(1 +1& — nl + n)~™nCNm 5 2n — £)|dn.

Since N, m is arbitrary the right-hand side is bounded by that of (6.38) (for any &).
Thus we conclude the assertion. For F(op(h)av)(€) the proof is similar. m]
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Take compact conic sets W, Z such that U € W,V € Z and Z N k*W = #.Denote

f‘y = Wy, Iy = Z, then by Lemma 6.14 there is a neighborhood €2, of y such that for
any a € C3°(R2y) and p, g € R one has

|Fl@opyv)(m| < CA + P lvlly, nely, veHI. (6.41)

Similarly there exist a neighborhood w, of x and a closed cone I > I'{ such that for
any B € C°(wy) and p, g € R we have

|Fopk)Bu)(©)| < CA+ [EDPlully, & €Ty, ueHI. (6.42)
Shrinking w, if necessary one may assume « (wy) € 22, (y = «(x)).Note that 7(Z)
can be covered by a finite number of w,, . We denote wy;, = w; and ; = Qy,, I} =Ty,
I, I} so on.Take B; € C§°(w;) such that ), B; = 1 on (Z).Since k#(1 — )" B;) €
$7° it is enough to consider ) ; op(k)p;.Similarly taking o; € C§°(2;) which is 1

on k(w;) it sufﬁces to consider ), op(k)Bix*«; Denoting u = «;op(h)v and using
K*u = 2m)~¢ [ €M i(n)dn one sees

F(Bik*u) = 2m)™ / Bi (x)e! WM =ED i (ydndx = / 1€, ma(ndn
where

1€, = @m)™ / Bi(x)e! I8N g

Since d({k(x), n) — (x,£)) = (dx,'k'(x)n — &) we have |k’ (x)n — &| > |§]/2 for
€] > 2B|n| with some B > 0, while if |£€| < 2B|n| it is obvious [/ (&, )] < C <
C2BN + 1)V + [n))N. Thus for any N € N the following estimate holds

[1E m| <eva+EDNA+ )Y, &neR (6.43)
Next, one can assume that w; is chosen such that
xew nely, &l = |i/(x)n—E&| = (€] +In) (6.44)

holds with some € > 0. Using (6.44) a repetition of integration by parts gives
|I(§', n)| < Cny(+|&]+|n))~N for & € I} and n € I;. Summarizing we conclude

| FBi w)()] < Cy <fr a1+ 1]+ Inh~Vdny

(6.45)
+(1+ )~ fr ()1 + Inl)Ndn> . Eel.



20 Page 54 of 55 T. Nishitani

From (6.41) it follows that |i#(n)| < C(1 + [n))?||v|l, for any p if n € f‘f which
together with (6.45) gives |F(Bix*u)(&)| < C(E)_N||v||q forany £ € I and N € N.

Lemma 6.15 If the support of h € S is contained in a compact conic set and u € H4
satisfies 1(£) = O(|€|™N) for any N in an open cone T then for any N and open cone
I @ T there is C such that

| Fop(hyu) )| < C&)~N{ SUIF)(l + DNFEEDZGm) | + ully ), & el
ne

Proof Using (6.40) write F(op(h)u)(&) as

7! F(op(h)u)(§) = / + f = f
1§ —nl<clé] §—nl=clé| & —nl<cl§]

4 / G+ €00+ E)dxdn = 1) + 1(6)
nl=c

Choose 0 < ¢ < lsuchthat2n —& =& 4+2(n—¢&) elif|€ —n| <clé|and & € T’
then a repetition of integration by parts gives

111(&)] < /|s ‘ IS‘<a§—rz)‘”|<Dx/z>2Nh<x, mla2n — &)ldxdn
—nl<c
< cSu;F)(l + DN aml | & —m 2N+ 120 — &) "Ndy
ne
< C'(1+ g M  sup(1 + [n)*Nam)l, & eT’

nel

for 1+[€|+[n| < 3(1+1& —n)(14[2n—&]). For L (§) noting [2n+&| < 2+¢ )|
if ] > c|&] integration by parts proves

|L()] sfl Igl<n>—2N|<Dx/2>2Nh(x,n+s>||ﬁ(2n+s>|abcdn
nl=c

< C(g) 2N FlalHd+h/2 / ()~ TV 2n + )02y + £)|dn

< C/<$>72N+|q|+(d+l)/2”u”q.

Since N is arbitrary the proof is completed. O

Here apply Lemma 6.15 with ' =T}, I = l:‘l." to obtain
|7 (op(k) Birc*eiop(M)v) (§)| < C (&)~ (IIvllg + leiop()vlly) < C'€) Vvl
for & € f‘f. If¢ e I (6.42) shows that for any p one has

|F (op(k) i *ajop(M)v) (€)| < C (&)l *ezop()vlly < C'(€)Pvllg-
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Combining these two estimates we complete the proof of the proposition. O
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