Skip to main content
Log in

Effect of sintering on grain boundary microstructure and electrical properties of CaCu3Ti4O12 ceramics

  • Material Science
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

CaCu3Ti4O12 ceramic with a giant dielectric constant was synthesized by sol-gel method and sintered in three different sintering conditions: 1 035 °C for 48 h, 1 080 °C for 3 h and 48 h. The phase of the ceramics, the element distribution, the valance state of Ti ions at grain boundaries, and the electrical properties were characterized via X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), X-ray photoelectron spectroscopy (XPS), electrical conduction and dielectric measurement. The results demonstrate that the grain-boundary microstructure and the electrical properties are influenced by sintering conditions: ➀ By raising sintering temperature, the Cu-rich and Ti-poor grain boundary was formed and grain resistivity was decreased. ➁ By prolonging sintering time, the content of Ti3+ near the grain boundary increased, leading to the decrease of the grain-boundary resistivity and the increase of the activation energy at grain boundary. The ceramic, sintering at 1 080 °C for 48 h, exhibited a small grain resistivity (60.5 Ω · cm), a large grain-boundary activation energy (0.42 eV), and a significantly enhanced dielectric constant (close to 1×105 at a low frequency of 1×103 Hz ). The results of electrical properties accord with the internal boundary layer capacitor model for explaining the giant dielectric constant observed in CaCu3Ti4O12 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramirez A P, Subramanian M A, Gardel M, et al. Giant dielectric constant response in a copper-titanate [J]. Solid State Communications, 2000, 115(5): 217–220.

    Article  CAS  Google Scholar 

  2. Kolev N, Bontchev R P, Jacobson A J, et al. Raman spectroscopy of CaCu3Ti4O12 [J]. Physical Review B, 2002, 66: 132102–132102-4.

    Article  Google Scholar 

  3. Subramanian M A, Li D, Duan N, et al. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases [J]. Journal of Solid State Chemistry, 2000, 151: 323–325.

    Article  CAS  Google Scholar 

  4. Zhu Y, Zheng J C, Wu L, et al. Nanoscale disorder in CaCu3Ti4O12: A new route to the enhanced dielectric response [J]. Physical Review Letters, 2007, 99: 037602–037602-4.

    Article  CAS  PubMed  Google Scholar 

  5. Delugas P, Alippi P, Fiorentini V, et al. Reorientable dipolar CuCa antisite and anomalous screening in CaCu3Ti4O12 [J]. Physical Review B, 2010, 81: 081104–081104-4.

    Article  Google Scholar 

  6. Li M, Shen Z J, Nygren M. Origin(s) of the apparent high permittivity in CaCu3Ti4O12 ceramics: Clarification on the contributions from internal barrier layer capacitor and sample-electrode contact effects [J]. Journal of Applied Physics, 2009, 106(10): 104106–104106-8.

    Article  Google Scholar 

  7. Kwon S, Huang C C, Subramanian M A, et al. Effects of cation stoichiometry on the dielectric properties of CaCu3Ti4O12 [J]. Journal of Alloys and Compounds, 2009, 473(1–2): 433–436.

    Article  CAS  Google Scholar 

  8. Adams T B, Sinclair D C, West A R. Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics[J]. Physical Review B, 2006, 73: 094124–094124-9.

    Article  Google Scholar 

  9. Li M, Feteira A, Sinclair D C, et al. Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics [J]. Applied Physics Letters, 2006, 88(23): 232903–232903-3.

    Article  Google Scholar 

  10. Li M, Feteira A, Sinclair D C, et al. Incipient ferroelectricity and microwave dielectric resonance properties of CaCu2.85Mn0.15Ti4O12 ceramics [J]. Applied Physics Letters, 2007, 91(13): 132911–132911-3.

    Article  Google Scholar 

  11. Yang Z, Zhang Y, You G, et al. Dielectric and electrical transport properties of the Fe3+-doped CaCu3Ti4O12 [J]. Journal of Materials Science & Technology, 2012, 28(12): 1145–1150.

    Article  Google Scholar 

  12. Wang C C, Zhang L W. Oxygen-vacancy-related dielectric anomaly in CaCu3Ti4O12: Post-sintering annealing studies [J]. Physical Review B, 2006, 74: 024106–024106-4.

    Article  Google Scholar 

  13. Lin Y H, Cai J, Li M, et al. Grain boundary behavior in varistor-capacitor TiO2-rich CaCu3Ti4O12 ceramics [J]. Journal of Applied Physics, 2008, 103(7): 074111–074111-5.

    Article  Google Scholar 

  14. Patterson E A, Kwon S, Huang C C, et al. Effects of ZrO2 additions on the dielectric properties of CaCu3Ti4O12 [J]. Applied Physics Letters, 2005, 87(18): 182911–182911-3.

    Article  Google Scholar 

  15. Fang T T, Mei L T, Ho H F. Effects of Cu stoichiometry on the microstructures, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12 [J]. Acta Materialia, 2006, 54(10): 2867–2875.

    Article  CAS  Google Scholar 

  16. Luo F C, He J L, Hu J, et al. Electric and dielectric properties of Bi-doped CaCu3Ti4O12 ceramics [J]. Journal of Applied Physics, 2009, 105(7): 076104–076104-3.

    Article  Google Scholar 

  17. Yang Z, Zhang Y, Lu Z H, et al. Electrical conduction and dielectric properties of the Rb-doped CaCu3Ti4O12 [J]. Journal of the American Ceramic Society, 2013, 96(3): 806–811.

    Article  CAS  Google Scholar 

  18. Yang Z, Zhang Y, Zhang K, et al. Effect of grain-boundary behavior on the dc electric conduction in Rb-doped CaCu3Ti4O12 [J]. Journal of Materials Science: Materials in Electronics, 2013, 24(3): 1063–1067.

    CAS  Google Scholar 

  19. Zhao Y H, Gao R J, Su G, et al. Effect of dispersant on CaCu3Ti4O12 powders synthesized by oxalate co-precipitation method [J]. Materials Letters, 2013, 91: 187–190.

    Article  CAS  Google Scholar 

  20. Sangwong N, Yamwong T, Thongbai P. Synthesis, characterization and giant dielectric properties of CaCu3Ti4O12 ceramics prepared by a polyvinyl pyrrolidone-dimethylfor mamide solution route [J]. Journal of Electroceramics, 2013, 31(1–2): 181–188.

    Article  CAS  Google Scholar 

  21. Ahmad M M. Giant dielectric constant in CaCu3Ti4O12 nanoceramics [J]. Applied Physics Letters, 2013, 102(23): 232908–232908-4.

    Article  Google Scholar 

  22. Swatsitang E, Niyompan A, Putjuso T. Giant dielectric, low dielectric loss, and non-ohmic properties of nanocrystalline CaCu3Ti4O12 [J]. Journal of Materials Science: Materials in Electronics, 2013, 24(9): 3514–3520.

    CAS  Google Scholar 

  23. Kumar R, Zulfequar M, Sharma L, et al. Growth of nanocrystalline CaCu3Ti4O12 ceramic by the microwave flash combustion method: structural and impedance spectroscopic studies [J]. Crystal Growth & Design, 2015, 15(3): 1374–1379.

    Article  CAS  Google Scholar 

  24. Ahmad M M, Yamada K. Grain size effect on the giant dielectric constant of CaCu3Ti4O12 nanoceramics prepared by mechanosynthesis and spark plasma sintering [J]. Journal of Applied Physics, 2014, 115(15): 154103–154103-6.

    Article  Google Scholar 

  25. Jesurani S, Kanagesan S, Velmurugan R, et al. A comparative study of conventional sintering with microwave sintering of high dielectric calcium copper titanate nano powder synthesized by sol-gel route [J]. Transactions of the Indian Ceramic Society, 2011, 70(2): 79–85.

    Article  CAS  Google Scholar 

  26. Yang Z, Zhang Y, Xiong R, et al. Effect of sintering in oxygen on electrical conduction and dielectric properties in CaCu3Ti4O12 [J]. Materials Research Bulletin, 2013, 48(2): 310–314.

    Article  CAS  Google Scholar 

  27. Wang B, Pu Y P, Wu H D, et al. Influence of sintering atmosphere on dielectric properties and microstructure of CaCu3Ti4O12 ceramics [J]. Ceramics International, 2013, 39: S525–S528.

    Article  CAS  Google Scholar 

  28. Prakash B S, Varma K B R. The influence of the segregation of Cu-rich phase on the microstructural and impedance characteristics of CaCu3Ti4O12 ceramics [J]. Journal of Materials Science, 2007, 42(17): 7467–7477.

    Article  CAS  Google Scholar 

  29. Schmidt R, Stennett M C, Hyatt N C, et al. Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics [J]. Journal of the European Ceramic Society, 2012, 32(12): 3313–3323.

    Article  CAS  Google Scholar 

  30. Zhang L, Tang Z J. Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12 [J]. Physical Review B, 2004, 70(17): 174306–174306-6.

    Article  Google Scholar 

  31. Adams T B, Sinclair D C, West A R. Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics [J]. Advanced Materials, 2002, 14: 1321–1323.

    Article  CAS  Google Scholar 

  32. Clarke D R. Varistor ceramics [J]. Journal of the American Ceramic Society, 1999, 82(3): 485–502.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Xiong.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (51172166) and the Ph.D. Programs Foundation of City College, Wuhan University of Science and Technology (2014CYBSKY003)

Biography: YANG Zhi, female, Lecturer, Ph. D., research direction: ceramics with a giant dielectric constant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Xiong, R. Effect of sintering on grain boundary microstructure and electrical properties of CaCu3Ti4O12 ceramics. Wuhan Univ. J. Nat. Sci. 20, 255–261 (2015). https://doi.org/10.1007/s11859-015-1090-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-015-1090-0

Key words

CLC number

Navigation