Skip to main content
Log in

Primary school children’s strategies in solving contingency table problems: the role of intuition and inhibition

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Understanding contingency table analysis is a facet of mathematical competence in the domain of data and probability. Previous studies have shown that even young children are able to solve specific contingency table problems, but apply a variety of strategies that are actually invalid. The purpose of this paper is to describe primary school children’s strategy use, and to explore the extent to which psychological theories of intuition and inhibition help better understand the cognitive mechanisms underlying these strategies. In an initial study, we investigated 231 second-graders’ performance on various types of contingency table problems in a paper-and-pencil test. In a second study, we asked 45 second- and fourth-graders to give reasons for their decisions on contingency table problems in an interview situation. Results of both studies suggest that ignoring relevant information and referring to additive rather than multiplicative relationships between cell frequencies were among the children’s primary strategies. These strategies can be explained by intuition, which the children were often not able to inhibit. We discuss the implications of this interpretation from a mathematics education perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. An alternative measure is the \(\chi^{2}\)-test, which cannot be used, however, for small sample sizes.

  2. There are several other normative measures of the association of two binary variables, such as the odds ratio OR, or the contingency coefficient C.

  3. Non-parametric tests were used because the data did not follow a normal distribution.

  4. The transcripts were translated from the German original by the authors.

References

  • Anderson, N. H., & Schlottmann, A. (1991). Developmental study of personal probability. In N. H. Anderson (Ed.), Contributions to information integration theory (Vol. III, pp. 111–134)., Developmental Hillsdale: Erlbaum.

    Google Scholar 

  • Babai, R., Brecher, T., Stavy, R., & Tirosh, D. (2006). Intuitive interference in probabilistic reasoning. International Journal of Science and Mathematics Education, 4, 627–639. doi:10.1007/s10763-006-9031-1

    Article  Google Scholar 

  • Barbey, A. K., & Sloman, S. A. (2007). Base-rate respect: from ecological rationality to dual processes. Behavioural and Brain Sciences, 30, 241–297. doi:10.1017/S0140525X07001653

    Google Scholar 

  • Batanero, C., Cañadas, G., Artega, P., & Gea, M. (2013). Psychology students’ strategies and semiotic conflicts when assessing independence. In Paper presented at CERME 8, Antalya, Turkey. http://cerme8.metu.edu.tr/wgpapers/WG5/WG5_Batanero.pdf. Accessed 19 Jan 2015.

  • Batanero, C., Estepa, A., Godino, J. D., & Green, D. R. (1996). Intuitive strategies and preconceptions about association in contingency tables. Journal for Research in Mathematics Education, 27, 151–169.

    Article  Google Scholar 

  • Batanero, C., Godino, J. D., & Estepa, A. (1998). Building the meaning of statistical association through data analysis activities. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Group for the Psychology of Mathematics Education, PME (Vol. 1, pp. 221–236). South Africa: University of Stellenbosch.

  • Ben-Zvi, D., Aridor, K., Makar, K., & Bakker, A. (2012). Students’ emergent articulations of uncertainty while making informal statistical inferences. ZDM––The International Journal on Mathematics Education, 44, 913–925. doi:10.1007/s11858-012-0420-3

    Article  Google Scholar 

  • Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: where young children go wrong. Developmental Psychology, 44, 1478–1490. doi:10.1037/a0013110

    Article  Google Scholar 

  • Chaiken, S., & Trope, Y. (1999). Dual-process theories in social psychology. New York: Guilford Press.

    Google Scholar 

  • Christou, P. K. (2015). Natural number bias in operations with missing numbers. ZDM Mathematics Education, 47(5) (this issue). doi:10.1007/s11858-015-0675-6

  • Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological Review, 87, 215–251. doi:10.1037/0033-295X.87.3.215

    Article  Google Scholar 

  • Evans, J. S. B. T., & Stanovich, K. (2013). Dual-process theories of higher cognition: advancing the debate. Perspectives on Psychological Science, 8, 223–241. doi:10.1177/1745691612460685

    Article  Google Scholar 

  • Fischbein, E. (1987). Intuition in science and mathematics. An educational approach. Dordrecht: Reidel.

    Google Scholar 

  • Fischbein, E., & Schnarch, D. (1997). The evolution with age of probabilistic, intuitively based misconceptions. Journal for Research in Mathematics Education, 28, 96–105.

    Article  Google Scholar 

  • Fischbein, E., Tirosh, D., & Hess, P. (1979). The intuition of infinity. Educational Studies in Mathematics, 10, 3–40. doi:10.1007/BF00311173

    Article  Google Scholar 

  • Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual Review of Psychology, 62, 451–482. doi:10.1146/annurev-psych-120709-145346

    Article  Google Scholar 

  • Gillard, E., Van Dooren, W., Schaeken, W., & Verschaffel, L. (2009). Dual processes in the psychology of mathematics education and cognitive psychology. Human Development, 52, 95–108. doi:10.1159/000202728

    Article  Google Scholar 

  • Jeong, Y., Levine, S., & Huttenlocher, J. (2007). The development of proportional reasoning: effect of continuous vs. discrete quantities. Journal of Cognition and Development, 8, 237–256. doi:10.1080/15248370701202471

    Article  Google Scholar 

  • Kahneman, D., & Klein, G. (2009). Conditions for intuitive expertise. American Psychologist, 64, 515–526. doi:10.1037/a0016755

    Article  Google Scholar 

  • KMK [Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland]. (2005). Bildungsstandards im Fach Mathematik für den Primarbereich. Beschluss vom 15.10.2004 (Beschlüsse der Kultusministerkonferenz), Bonn.

  • Koehler, J. J. (1996). The base rate fallacy reconsidered: descriptive, normative, and methodological challenges. Behavioral and Brain Sciences, 19, 1–53. doi:10.1017/S0140525X00041157

    Article  Google Scholar 

  • Lem, S. (2015). The intuitiveness of the law of large numbers. ZDM Mathematics Education, 47(5) (this issue). doi:10.1007/s11858-015-0676-5

  • McKenzie, C. R. M. (1994). The accuracy of intuitive judgment strategies: covariation assessment and Bayesian inference. Cognitive Psychology, 26, 209–239. doi:10.1006/cogp.1994.1007

    Article  Google Scholar 

  • Mix, K. S., Levine, S. C., & Huttenlocher, J. (1999). Early fraction calculation ability. Developmental Psychology, 35, 164–174. doi:10.1037/0012-1649.35.1.164

    Article  Google Scholar 

  • Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction, 28, 64–72. doi:10.1016/j.learninstruc.2013.05.003

    Article  Google Scholar 

  • OECD. (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. Paris: OECD.

    Book  Google Scholar 

  • Piaget, J., & Inhelder, B. (1951/1975). The origin of the idea of chance in children. London: Routledge & Kegan Paul.

  • Reiss, K., Barchfeld, P., Lindmeier, A., Sodian, B., & Ufer, S. (2011). Interpreting scientific evidence: primary students’ understanding of base rates and contingency tables. In B. Ubuz (Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 33–40). Ankara (Turkey): PME.

  • Shaklee, H., Holt, P., Elek, S., & Hall, L. (1988). Covariation judgment: improving rule use among children, adolescents, and adults. Child Development, 59, 755–768. doi:10.2307/1130574

    Article  Google Scholar 

  • Shaklee, H., & Mims, M. (1982). Sources of error in judging event covariations: effects of memory demands. Journal of Experimental Psychology. Learning, Memory, and Cognition, 8, 208–224. doi:10.1037/0278-7393.8.3.208

    Article  Google Scholar 

  • Shaklee, H., & Paszek, D. (1985). Covariation judgments: systematic rule use in middle childhood. Child Development, 56, 1229–1245. doi:10.2307/1130238

    Article  Google Scholar 

  • Spinillo, A. G., & Bryant, P. (1999). Proportional reasoning in young children: part–part comparisons about continuous and discontinuous quantity. Mathematical Cognition, 5, 181–197. doi:10.1080/135467999387298

    Article  Google Scholar 

  • Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31, 344–355. doi:10.1016/j.jmathb.2012.02.001

    Article  Google Scholar 

  • Van Hoof, J., Janssen, R., Verschaffel, L., & Van Dooren, W. (2015). Inhibiting natural knowledge in fourth graders: towards a comprehensive test instrument. ZDM Mathematics Education, 47(5) (this issue). doi:10.1007/s11858-014-0650-7.

  • Van Hoof, J., Lijnen, T., Verschaffel, L., & Van Dooren, W. (2013). Are secondary school students still hampered by the natural number bias? A reaction time study on fraction comparison tasks. Research in Mathematics Education, 15, 154–164. doi:10.1080/14794802.2013.797747

    Article  Google Scholar 

  • Wynn, K. (1997). Competence models of numerical development. Cognitive Development, 12, 333–339. doi:10.1016/S0885-2014(97)90005-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Obersteiner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obersteiner, A., Bernhard, M. & Reiss, K. Primary school children’s strategies in solving contingency table problems: the role of intuition and inhibition. ZDM Mathematics Education 47, 825–836 (2015). https://doi.org/10.1007/s11858-015-0681-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-015-0681-8

Keywords

Navigation