Skip to main content
Log in

Extreme Points of Matrix Convex Sets, Free Spectrahedra, and Dilation Theory

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

For matrix convex sets, a unified geometric interpretation of notions of extreme points and of Arveson boundary points is given. These notions include, in increasing order of strength, the core notions of “Euclidean” extreme points, “matrix” extreme points, and “absolute” extreme points. A seemingly different notion, the “Arveson boundary”, has by contrast a dilation-theoretic flavor. An Arveson boundary point is an analog of a (not necessarily irreducible) boundary representation for an operator system. This article provides and explores dilation-theoretic formulations for the above notions of extreme points. The scalar solution set of a linear matrix inequality (LMI) is known as a spectrahedron. The matricial solution set of an LMI is a free spectrahedron. Spectrahedra (resp. free spectrahedra) lie between general convex sets (resp. matrix convex sets) and convex polyhedra (resp. free polyhedra). As applications of our theorems on extreme points, it is shown that the polar dual of a matrix convex set K is generated, as a matrix convex set, by finitely many Arveson boundary points if and only if K is a free spectrahedron, and if the polar dual of a free spectrahedron K is again a free spectrahedron, then at the scalar level K is a polyhedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Agler, J.: An Abstract Approach to Model Theory, Surveys of Some Recent Results in Operator Theory. Pitman Research Notes in Mathematics Series, vol. 192, pp. 1–23. Longman Scientific Technical, Harlow (1988)

    Google Scholar 

  2. Agler, J., McCarthy, J.E.: Global holomorphic functions in several non-commuting variables. Canad. J. Math. 67, 241–285 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arveson, W.: Subalgebras of C\(^*\)-algebras. Acta Math. 123, 141–224 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arveson, W.: Subalgebras of C\(^*\)-algebras II. Acta Math. 128, 271–308 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arveson, W.: The noncommutative Choquet boundary. J. Am. Math. Soc. 21, 1065–1084 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ball, J.A., Bolotnikov, V.: Interpolation in the noncommutative Schur–Agler class. J. Oper. Theory 58, 83–126 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Barvinok, A.: A Course in Convexity, Graduate studies in Mathematics, vol. 54. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  8. Blekherman, G., Parrilo, P.A., Thomas, R.R. (eds. ) Semidefinite Optimization and Convex Algebraic Geometry. MOS-SIAM Series on Optimization 13, SIAM (2013)

  9. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics 15, SIAM (1994)

  10. Brändén, P.: Obstructions to determinantal representability. Adv. Math. 226, 1202–1212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burgdorf, S., Klep, I., Povh, J.: Optimization of Polynomials in Non-commuting Variables, SpringerBriefs in Mathematics. Springer, New York (2016)

    MATH  Google Scholar 

  12. Davidson, K.R., Kennedy, M.: The Choquet boundary of an operator system. Duke Math. J. 164, 2989–3004 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davidson, K.R., Dor-On, A., Shalit, O., Solel, B.: Dilations, inclusions of matrix convex sets, and completely positive maps. Internat. Math. Res. Notices (IMRN). http://arxiv.org/abs/1601.07993 (to appear)

  14. de Oliveira, M., Helton, J.W., McCullough, S., Putinar, M.: Engineering systems and free semi-algebraic geometry. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, pp. 17–61. Springer, New York (2009)

    Chapter  Google Scholar 

  15. Dritschel, M.A., McCullough, S.A.: Boundary representations for families of representations of operator algebras and spaces. J. Oper. Theory 53, 159–168 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Effros, E.G., Winkler, S.: Matrix convexity: operator analogues of the bipolar and Hahn–Banach theorems. J. Funct. Anal. 144, 117–152 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Farenick, D.R.: Extremal matrix states on operator systems. J. Lond. Math. Soc. 61, 885–892 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Farenick, D.R.: Pure matrix states on operator systems. Linear Algebr. Appl. 393, 149–173 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fritz, T., Netzer, T., Thom, A.: Spectrahedral containment and operator systems with finite-dimensional realization. SIAM J. Appl. Alg. Geom. https://arxiv.org/abs/1609.07908 (to appear)

  20. Fuller, A.H., Hartz, M., Lupini, M.: Boundary Representations of Operator Spaces, and Compact Rectangular Matrix Convex Sets. preprint https://arxiv.org/abs/1610.05828

  21. Hamana, M.: Injective envelopes of operator systems. Publ. Res. Inst. Math. Sci. 15, 773–785 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Helton, J.W., Klep, I., McCullough, S.: The matricial relaxation of a linear matrix inequality. Math. Program. 138, 401–445 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Helton, J.W., Klep, I., McCullough, S.: Matrix convex hulls of free semialgebraic sets. Trans. Am. Math. Soc. 368, 3105–3139 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Helton, J.W., Klep, I., McCullough, S.: The tracial Hahn–Banach theorem, polar duals, matrix convex sets, and projections of free spectrahedra. J. Eur. Math. Soc. 19, 1845–1897 (2017)

  25. Helton, J.W., Klep, I., McCullough, S., Schweighofer, M.: Dilations, linear matrix inequalities, the matrix cube problem and beta distributions. Memoirs of the American Mathematical Society. https://arxiv.org/abs/1412.1481 (to appear)

  26. Helton, J.W., McCullough, S.: Every free basic convex semi-algebraic set has an LMI representation. Ann. Math. 176, 979–1013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Helton, J.W., Vinnikov, V.: Linear matrix inequality representation of sets. Commun. Pure Appl. Math. 60, 654–674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  29. Kalyuzhnyi-Verbovetskiĭ, D., Vinnikov, V.: Foundations of Free Noncommutative Function Theory. American Mathematical Society, Providence (2014)

    Book  Google Scholar 

  30. Kleski, C.: Boundary representations and pure completely positive maps. J. Oper. Theory 71, 45–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Marcus, A.W., Spielman, D.A., Srivastava, N.: Interlacing families II: Mixed characteristic polynomials and the Kadison–Singer problem. Ann. Math. 182, 327–350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Muhly, P.S., Solel, B.: Progress in noncommutative function theory. Sci. China Ser. A 54, 2275–2294 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Muhly, P.S., Solel, B.: An algebraic characterization of boundary representations, Nonselfadjoint operator algebras, operator theory, and related topics. In: Operator Theory: Advances and Applications, vol. 104, 189–196. Birkhuser, Basel (1998)

  34. Nemirovskii, A.: Advances in Convex Optimization: conic Programming, Plenary Lecture. International Congress of Mathematicians (ICM), Madrid, Spain (2006)

  35. Netzer, T., Thom, A.: Polynomials with and without determinantal representations. Linear Algebr. Appl. 437, 1579–1595 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  37. Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  38. Popescu, G.: Free holomorphic automorphisms of the unit ball of \(B(H)^n\). J. Reine Angew. Math. 638, 119–168 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Ramana, M., Goldman, A.J.: Some geometric results in semidefinite programming. J. Glob. Optim. 7, 33–50 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Skelton, R.E., Iwasaki, T., Grigoriadis, K.M.: A Unified Algebraic Approach to Linear Control Design. Taylor & Francis, London (1997)

    Google Scholar 

  41. Vinnikov, V.: Self-adjoint determinantal representations of real plane curves. Math. Ann. 296, 453–479 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Voiculescu, D.-V.: Free analysis questions II: The Grassmannian completion and the series expansions at the origin. J. Reine Angew. Math. 645, 155–236 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Webster, C., Winkler, S.: The Krein–Milman theorem in operator convexity. Trans. Am. Math. Soc. 351, 307–322 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zalar, A.: Operator Positivstellensätze for noncommutative polynomials positive on matrix convex sets. J. Math. Anal. Appl. 445, 32–80 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research supported by the National Science Foundation (NSF) Grant DMS 1201498, and the Ford Motor Co. Supported by the Marsden Fund Council of the Royal Society of New Zealand. Partially supported by the Slovenian Research Agency Grants P1-0222 and L1-6722. Research supported by the NSF Grant DMS-1361501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Klep.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evert, E., Helton, J.W., Klep, I. et al. Extreme Points of Matrix Convex Sets, Free Spectrahedra, and Dilation Theory. J Geom Anal 28, 1373–1408 (2018). https://doi.org/10.1007/s12220-017-9866-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9866-4

Keywords

Mathematics Subject Classification

Navigation