Skip to main content
Log in

Families of superelliptic curves, complex braid groups and generalized Dehn twists

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the universal family Edn of superelliptic curves: each curve Σdn in the family is a d-fold covering of the unit disk, totally ramified over aset P of n distinct points; \(\Sigma _n^d \hookrightarrow E_n^d \to {{\rm{C}}_n}\) is a fiber bundle, where Cn is the configuration space of n distinct points.

We find that Edn is the classifying space for the complex braid group of type B(d, d, n) and we compute a big part of the integral homology of Edn , including a complete calculation of the stable groups over finite fields by means of Poincaré series. The computation of the main part of the above homology reduces to the computation of the homology of the classical braid group with coefficients in the first homology group of Σdn , endowed with the monodromy action. While giving a geometric description of such monodromy of the above bundle, we introduce generalized \({1 \over d}\)-twists, associated to each standard generator of the braid group, which reduce to standard Dehn twists for d = 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnol’d, On some topological invariants of algebraic functions, Transactions of the Moscow Mathematical Society 21 (1970), 30–52.

    Google Scholar 

  2. A. Bianchi, Embeddings of braid groups into mapping class groups, Master Thesis, University of Pisa, 2016, https://etd.adm.unipi.it/t/etd-06172016-101920/.

  3. A. Bianchi, Braid groups, mapping class groups and their homology with twisted coefficients, https://arxiv.org/abs/1901.08028.

  4. M. Broué, G. Malle and R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, Journal für die Reine ind Angewandte Mathematik 500 (1998), 127–190.

    MathSciNet  MATH  Google Scholar 

  5. E. Brieskorn, Sur les groupes de tresses [d’après V. I. Arnol’d], in Séminaire Bourbaki, 24ème année (1971/1972), Lecture Notes in Mathematics, Vol. 317, Springer, Berlin, 1973, pp. 21–44.

    Chapter  Google Scholar 

  6. K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, Vol. 87, Springer, New York, 1994.

    Google Scholar 

  7. F. Callegaro, The homology of the Milnor fiber for classical braid groups, Algebraic & Geometric Topology 6 (2006), 1903–1923.

    Article  MathSciNet  Google Scholar 

  8. W. Chen, Homology of braid groups, the burau representation, and points on superelliptic curves over finite fields, Israel Journal of Mathematics 220 (2017), 739–546.

    Article  MathSciNet  Google Scholar 

  9. F. Callegaro and I. Marin, Homology computations for complex braid groups, Journal of the European Mathematical Society 16 (2014), 103–164.

    Article  MathSciNet  Google Scholar 

  10. F. Callegaro, D. Moroni and M. Salvetti, Cohomology of affine Artin groups and applications, Transactions of the American Mathematical Society 360 (2008), 4169–4188.

    Article  MathSciNet  Google Scholar 

  11. J. Crisp and L. Paris, Artin groups of type B and D, Advances in Geometry 5 (2005), 607–636.

    Article  MathSciNet  Google Scholar 

  12. R. Corran and M. Picantin, A new Garside structure for the braid groups of type (e, e, r), Journal of the London Mathematical Society 84 (2011), 689–711.

    Article  MathSciNet  Google Scholar 

  13. F. Callegaro and M. Salvetti, Homology of the family of hyperelliptic curves, Israel Journal of Mathematics 230 (2019), 653–692.

    Article  MathSciNet  Google Scholar 

  14. P. Dehornoy and Y. Lafont, Homology of Gaussian groups, Universitè de Grenoble. Annales de l’Institut Fourier 53 (2003), 489–540.

    Article  MathSciNet  Google Scholar 

  15. J. S. Ellenberg, A. Venkatesh and C. Westerland, Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields, Annals of Mathematics 183 (2016), 729–786.

    Article  MathSciNet  Google Scholar 

  16. E. Fadell and L. Neuwirth, Configuration spaces, Mathematica Scandinavica 10 (1962), 111–118.

    Article  MathSciNet  Google Scholar 

  17. W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Annals of Mathematics 90 (1969), 542–575.

    Article  MathSciNet  Google Scholar 

  18. T. Ghaswala and A. McLeay, Mapping class groups of covers with boundary and braid group embeddings, Algebraic & Geometric Topology 20 (2020), 239–278.

    Article  MathSciNet  Google Scholar 

  19. V. V. Gorjunov, The cohomology of braid groups of series C and D and certain stratifications, Funktsional’nyĭ Analiz i ego Prilozheniya 12 (1978), 76–77.

    MathSciNet  Google Scholar 

  20. A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  21. B. C. Kim and Y. Song, Configuration spaces, moduli spaces and 3-fold covering spaces, Manuscripta Mathematica 160 (2019), 391–409.

    Article  MathSciNet  Google Scholar 

  22. G. I. Lehrer, Rational points and cohomology of discriminant varieties, Advances in Mathematics 186 (2004), 229–250.

    Article  MathSciNet  Google Scholar 

  23. E. J. N. Looijenga, Isolated Singular Points on Complete Intersections, London Mathematical Society Lecture Note Series, Vol. 77, Cambridge University Press, Cambridge, 1984.

    Book  Google Scholar 

  24. J. McCleary, A User’s Guide to Spectral Sequences, Cambridge Studies in Advanced Mathematics, Vol. 58, Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

  25. C. T. McMullen, Braid groups and Hodge theory, Mathematische Annalen 355 (2013), 893–946.

    Article  MathSciNet  Google Scholar 

  26. D. Margalit and S. Schleimer, Dehn twists have roots, Geometry & Topology 13 (2009), 1495–1497.

    Article  MathSciNet  Google Scholar 

  27. T. Nakamura, A note on the K (π, 1) property of the orbit space of the unitary reflection group G(m, l, n), Scientific Papers of the College of Arts and Sciences. University of Tokyo 33 (1983), 1–6.

    MathSciNet  MATH  Google Scholar 

  28. B. Perron and J.-P. Vannier, Groupe de monodromie géométrique des singularités simples, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 315 (1992), 1067–1070.

    MathSciNet  MATH  Google Scholar 

  29. B. Perron and J.-P. Vannier, Groupe de monodromie géométrique des singularités simples, Mathematische Annalen 306 (1996), 231–245.

    Article  MathSciNet  Google Scholar 

  30. O. Randal-Williams and N. Wahl, Homological stability for automorphism groups, Advances in Mathematics 318 (2017), 534–626.

    Article  MathSciNet  Google Scholar 

  31. M. Salvetti, The homotopy type of Artin groups, Mathematical Research Letters 1 (1994), 565–577.

    Article  MathSciNet  Google Scholar 

  32. G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canadian Journal of Mathematics 6 (1954), 274–304.

    Article  MathSciNet  Google Scholar 

  33. B. Wajnryb, Artin groups and geometric monodromy, Inventiones Mathematicae 138 (1999), 563–571.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Callegaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callegaro, F., Salvetti, M. Families of superelliptic curves, complex braid groups and generalized Dehn twists. Isr. J. Math. 238, 945–1000 (2020). https://doi.org/10.1007/s11856-020-2040-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2040-x

Navigation