Skip to main content
Log in

Non-metricity in the continuum limit of randomly-distributed point defects

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We present a homogenization theorem for isotropically-distributed point defects, by considering a sequence of manifolds with increasingly dense point defects. The loci of the defects are chosen randomly according to a weighted Poisson point process, making it a continuous version of the first passage percolation model. We show that the sequence of manifolds converges to a smooth Riemannian manifold, while the Levi-Civita connections converge to a non-metric connection on the limit manifold. Thus, we obtain rigorously the emergence of a non-metricity tensor, which was postulated in the literature to represent continuous distribution of point defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Bilby, R. Bullough and E. Smith, Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 1955 (1955), 263᾿73.

    Article  MathSciNet  Google Scholar 

  2. I. Benjamini, G. Kalai and O. Schramm, First passage percolation has sublinear distance variance, Annals of Probability 2003 (2003), 1970᾿978.

    MathSciNet  MATH  Google Scholar 

  3. M. Biskup, O. Louidor, E. B. Procaccia and R. Rosenthal, Isoperimetry in twodimensional percolation, Communications on Pure and Applied Mathematics 2015 (2015), 1483᾿531.

    Article  MATH  Google Scholar 

  4. B. A. Bilby and E. Smith, Continuous distributions of dislocations. III, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 236 (1956) 481᾿05.

    Article  MathSciNet  Google Scholar 

  5. G. Grimmett and H. Kesten, First-passage percolation, network flows and electrical resistances, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 1984 (1984), 335᾿6.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Grimmett, Percolation, Grundlehren der Mathematischen Wissenshcaften, Vol. 321, Springer, Berlin, 1999.

  7. P. Hall, On continuum percolation, Annals of Probability 1985 (1985), 1250᾿266.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. M. Hammersley and D. J. A. Welsh, First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory, in Bernoulli 1713, Bayes 1763, Laplace 1813. Proceedings of an International Research Seminar, Statistical Laboratory, University of California, Berkeley, 1963, Springer-Verlag, Berlin–Heidelberg, 1965, pp. 61᾿0.

    Google Scholar 

  9. H. Kesten, Aspects of first passage percolation, in École d’été de probabilités de Saint-Flour, XIV᾿984, Lecture Notes in Mathematics, Vol. 1180, Springer, Berlin, 1986. pp. 125᾿64.

    MathSciNet  MATH  Google Scholar 

  10. H. Kesten, On the speed of convergence in first-passage percolation, Annals of Applied Probability 1993 (1993), 296᾿38.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. F. C. Kingman, Subadditive ergodic theory, Annals of Probability 1973 (1973), 883᾿09.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Kupferman and C. Maor, The emergence of torsion in the continuum limit of distributed edge-dislocations, Journal of Geometric Mechanics 2015 (2015), 361᾿87.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Kupferman and C. Maor, Riemannian surfaces with torsion as homogenization limits of locally-euclidean surfaces with dislocation-type singularities, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2016 (2016), 741᾿68.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Kupferman, M. Moshe and J. P. Solomon, Metric description of defects in amorphous materials, Archive for Rational Mechanics and Analysis 2015 (2015), 1009᾿047.

    Article  MATH  Google Scholar 

  15. E. Kröner et al., Continuum theory of defects in Les Houches, Session XXXV, 1980—Physics of Defects, North-Holland, Amsterdam, 1981, pp. 217᾿15.

    Google Scholar 

  16. E. Kröner, The differential geometry of elementary point and line defects in bravais crystals, International Journal of Theoretical Physics 1990 (1990), 1219᾿237.

    Article  MATH  Google Scholar 

  17. T. M. Liggett, An improved subadditive ergodic theorem, Annals of Probability 1985 (1985), 1279᾿285.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Meester and R. Roy, Continuum Percolation, Cambridge Tracts inMathematics, Vol. 119, Cambridge University Press, Cambridge, 1996.

  19. M. F. Miri and N. Rivier, Continuum elasticity with topological defects, including dislocations and extra-matter, Journal of Physics. A: Mathematical and General 2002 (2002), 1727᾿739.

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Noll, Materially uniform simple bodies with inhomogeneities, Archive for Rational Mechanics and Analysis 1967 (1967), 1᾿2.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. F. Nye, Some geometrical relations in dislocated crystals, Acta metallurgica 1953 (1953), 153᾿62.

    Article  Google Scholar 

  22. P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics, Vol. 171, Springer, New York, 2006.

  23. S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Applied Probability. A Series of the Applied Probability Trust, Vol. 4, Springer-Verlag, New York, 1987.

  24. R. Roy, The Russo–Seymour–Welsh theorem and the equality of critical densities and the “dual᾿critical densities for continuum percolation on R2, Annals of Probability 1990 (1990), 1563᾿575.

    Article  MATH  Google Scholar 

  25. C. C. Wang, On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations, Archive for Rational Mechanics and Analysis 1967 (1967), 33᾿4.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Yavari and A. Goriely, Weyl geometry and the nonlinear mechanics of distributed point defects, Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences 2012 (2012), 3902᾿922.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raz Kupferman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupferman, R., Maor, C. & Rosenthal, R. Non-metricity in the continuum limit of randomly-distributed point defects. Isr. J. Math. 223, 75–139 (2018). https://doi.org/10.1007/s11856-017-1620-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1620-x

Navigation