Skip to main content
Log in

Fields of rationality of cusp forms

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we prove that for any totally real field F, weight k, and nebentypus character χ, the proportion of Hilbert cusp forms over F of weight k and character χ with bounded field of rationality approaches zero as the level grows large. This answers, in the affirmative, a question of Serre. The proof has three main inputs: first, a lower bound on fields of rationality for admissible GL2 representations; second, an explicit computation of the (fixed-central-character) Plancherel measure for GL2; and third, a Plancherel equidistribution theorem for cusp forms with fixed central character. The equidistribution theorem is the key intermediate result and builds on earlier work of Shin and Shin–Templier and mirrors work of Finis–Lapid–Mueller by introducing an explicit bound for certain families of orbital integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Arthur, The invariant trace formula II. Global Theory, J. Amer. Math. Soc., 1 (1988), 501–554.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Arthur, The L2-Lefschetz numbers of Hecke operators, Invent. Math., 97 (1989), 257–290.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Arthur, A stable trace formula. I. General expansions, J. Inst. Math. Jussieu 1 (2002), 175–277.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Arthur, The Endoscopic Classification of Representations; Orthogonal and Symplectic Groups, American Mathematical Society, Providence, RI, 2013.

    MATH  Google Scholar 

  5. A. O. L. Atkin and J. Lehner, Hecke operators on Г0(m), Math. Ann., 185 (1970), 134–160.

    Article  MathSciNet  MATH  Google Scholar 

  6. A.-M. Aubert and R. Plymen, Plancherel measure for GL(n, F) and GL(m, D): explicit formulas and Bernstein decomposition. J. Number Theory, 112 (2005), 26–66.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Clozel and P. Delorme, Le théorème de Paley-Wiener invariant pour les groupes de Lie réducatifs. II, Ann. Sci. Éc. Norm. Supér., 23 (1990), 193–228.

    Article  MATH  Google Scholar 

  8. L. Corwin, A. Moy and P. Sally, Degrees and formal degrees for division algebras and GLn over a p-adic field, Pac. J. Math., 141 (1990), 21–45.

    Article  MATH  Google Scholar 

  9. T. Finis and E. Lapid, An approximation principal for congruence subgroups, J. Eur. Math. Soc., to appear.

  10. T. Finis and E. Lapid, An approximation principle for congruence subgroups II: Application to the limit multiplicity problem, arXiv:1504.04795v1 [math.NT].

  11. T. Finis, E. Lapid and W. Mueller, Limit multiplicities for principal congruence subgroups of GL(n) and SL(n), J. Inst. Math. Jussieu, 14 (2014), 589–638.

    Article  MathSciNet  Google Scholar 

  12. S. Gelbart, Automorphic Forms on Adele Groups, Princeton University Press, Princeton, 1975.

    MATH  Google Scholar 

  13. S. Gelbart and H. Jacquet, Forms of GL(2) from the analytic point of view, in Automorphic Forms, Representations, and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 213–252.

    Google Scholar 

  14. A. Knightly and C. Li, Traces of Hecke Operators, The American Mathematical Society, Providence, RI, 2006.

    Book  MATH  Google Scholar 

  15. M. Palm, Explicit GL(2) trace formulas and mixed Weyl laws, arXiv:1212.4282v1 [math.NT].

  16. A. Raghuram and N. Tanabe, Notes on the arithmetic of Hilbert modular forms, J. Ramanujan Math. Soc., 26 (2011), pp. 261–319.

    MathSciNet  MATH  Google Scholar 

  17. F. Sauvageot, Principe de densité pour les groupes réductifs, Compos. Math., 108 (1997), 151–184.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Schmidt, Some remarks on local newforms for GL(2), J. Ramanujan Math. Soc., 17 (2002), 115–147.

    MathSciNet  MATH  Google Scholar 

  19. J.-P. Serre, Trees, Springer-Verlag, Berlin–Heidelberg, 1980.

    Book  MATH  Google Scholar 

  20. J.-P. Serre, Répartition asymptotic des values propres de l’opérateur de Hecke T p, J. Amer. Math. Soc. 10 (1997), 75–102.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Shimizu, On discontinuous groups operating on the product of the upper half planes, Ann. Math., 77 (1963), 33–71.

    Article  MathSciNet  MATH  Google Scholar 

  22. S.W. Shin, Automorphic Plancherel density theorem. Israel J. Math. 192 (2012), 83–120.

    Article  MathSciNet  MATH  Google Scholar 

  23. S.W. Shin and N. Templier, Sato–Tate theorem for families and low-lying zeros of automorphic L-functions, with appendices by Robert Kottwitz and Raf Cluckers, Julia Gordon, and Immanuel Halupczok, Invent. Math., 203 (2016), 1–177.

    Article  MathSciNet  Google Scholar 

  24. S.W. Shin and N. Templier, On fields of rationality for automorphic representation, Compos. Math., 150 (2014), 2003–2053.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. van Dijk, Computation of certain induced characters of p-adic groups, Math. Ann., 199 (1972), 229–240.

    Article  MathSciNet  MATH  Google Scholar 

  26. J.-L. Waldspurger, La formule de Plancherel d’après Harish-Chandra. J. Inst. Math. Jussieu 2 (2003), 235–333.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Weinstein, Hilbert modular forms with prescribed ramification, International Mathematics Research Notices, 2009 (2009), 1388–1420.

    Article  MathSciNet  MATH  Google Scholar 

  28. A.V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducibly representations of GL(n), Ann. Sci. Éc. Norm. Supér., 13 (1980), 165–210.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Binder.

Additional information

The author is supported by an NSF Graduate Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binder, J. Fields of rationality of cusp forms. Isr. J. Math. 222, 973–1028 (2017). https://doi.org/10.1007/s11856-017-1610-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1610-z

Navigation