Skip to main content
Log in

Matchings in vertex-transitive bipartite graphs

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A theorem of A. Schrijver asserts that a d-regular bipartite graph on 2n vertices has at least

$${\left( {\frac{{{{\left( {d - 1} \right)}^{d - 1}}}}{{{d^{d - 2}}}}} \right)^n}$$

perfect matchings. L. Gurvits gave an extension of Schrijver’s theorem for matchings of density p. In this paper we give a stronger version of Gurvits’s theorem in the case of vertex-transitive bipartite graphs. This stronger version in particular implies that for every positive integer k, there exists a positive constant c(k) such that if a d-regular vertex-transitive bipartite graph on 2n vertices contains a cycle of length at most k, then it has at least

$${\left( {\frac{{{{\left( {d - 1} \right)}^{d - 1}}}}{{{d^{d - 2}}}} + c\left( k \right)} \right)^n}$$

perfect matchings.

We also show that if G is a d-regular vertex-transitive bipartite graph on 2n vertices and m k (G) denotes the number of matchings of size k, and

$$M\left( {G,t} \right) = 1 + {m_1}\left( G \right)t + {m_2}\left( G \right){t^2} + \cdot \cdot \cdot + {m_n}\left( G \right){t^n} = \prod\limits_{k = 1}^n {\left( {1 + {\gamma _k}\left( G \right)t} \right),} $$

where γ 1(G) ≤ ... ≤ γ n (G), then

$${\gamma _k}\left( G \right) \geqslant \frac{{{d^2}}}{{4\left( {d - 1} \right){n^2}}}\frac{{{k^2}}}{{{n^2}}}$$

and

$$\frac{{{m_{n - 1}}\left( G \right)}}{{{m_n}\left( G \right)}} \leqslant \frac{2}{d}{n^2}$$

. The latter result improves on a previous bound of C. Kenyon, D. Randall and A. Sinclair. There are examples of d-regular bipartite graphs for which these statements fail to be true without the condition of vertex-transitivity.

We also show that if (G i ) is a Benjamini–Schramm convergent graph sequence of vertex-transitive bipartite graphs, then

$$\frac{{\ln pm\left( {{G_i}} \right)}}{{v\left( {{G_i}} \right)}}$$

is convergent, where pm(G) and v(G) denote the number of perfect matchings and the number of vertices of G, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abért, P. Csikvári, P. E. Frenkel and G. Kun, Matchings in Benjamini–Schramm convergent graph sequences, Transactions of the American Mathematical Society 368 (2016), 4197–4218.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Abért, P. Csikvári and T. Hubai, Matching measure, Benjamini–Schramm convergence and the monomer-dimer free energy, Journal of Statistical Physics 161 (2015), 16–34.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Butera, P. Federbush and M. Pernici, Higher-order expansions for the entropy of a dimer or a monomer-dimer system on d-dimensional lattices, Physical Reviews E 87 (2013), 062113.

    Article  Google Scholar 

  4. H. Cohn, R. Kenyon and J. Propp, A variational principle for domino tilings, Journal of the American Mathematical Society 14 (2001), 297–346.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Csikvári, Lower matching conjecture, and a new proof of Schrijver’s and Gurvits’s theorems, Journal of the European Mathematical Society, arXiv 1406.0766.

  6. J. N. Darroch, On the distribution of the number of successes in independent trials, Annals of Mathematical Statistics 35 (1964), 1317–1321.

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Elkies, G. Kuperberg, M. Larsen and J. Propp, Alternating sign matrices and domino tilings. I, Journal of Algebraic Combinatorics 1 (1992), 111–132.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Federbush, Computation of terms in the asymptotic expansion of dimer λd for high dimensions, Physics Letters A 374 (2009), 131–133.

    Article  MATH  Google Scholar 

  9. P. Federbush and S. Friedland, An asymptotic expansion and recursive inequalities for the monomer-dimer problem, Journal of Statistical Physics 143 (2011), 306–325.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Friedland, E. Krop and K. Markström, On the number of matchings in regular graphs, Electronic Journal of Combinatorics 15 (2008) R110, 28 pp.

    MathSciNet  MATH  Google Scholar 

  11. C. D. Godsil, Algebraic Combinatorics, Chapman and Hall Mathematics Series, Chapman and Hall, New York, 1993.

    MATH  Google Scholar 

  12. L. Gurvits, Van der Waerden/Schrijver-Valiant like conjectures and stable (aka hyperbolic) homogeneous polynomials: one theorem for all, Electronic Journal of Combinatorics 15 (2008), R66, 26 pp.

    MathSciNet  MATH  Google Scholar 

  13. L. Gurvits, Unleashing the power of Schrijver’s permanental inequality with the help of the Bethe Approximation, arXiv preprint 1106.2844v11.

  14. O. J. Heilmann and E. H. Lieb, Theory of monomer-dimer systems, Communications in Mathematical Physics 25 (1972), 190–232.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Jerrum and A. Sinclair, Approximating the permanent, SIAM Journal on Computing 18 (1989), 1149–1178.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Jerrum, A. Sinclair and E. Vigoda, A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries, Journal of the ACM 51 (2004), 671–697.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. W. Kasteleyn, The statistics of dimers on a lattice, I: the number of dimer arrangements on a quadratic lattice, Physica 27 (1961), 1209–1225.

    Article  MATH  Google Scholar 

  18. C. Kenyon, D. Randall and A. Sinclair, Approximating the number of monomer-dimer coverings of a lattice, Journal of Statistical Physics 83 (1996), 637–659.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae, Annals of Mathematics 163 (2006), 1019–1056.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Laurent and A. Schrijver, On Leonid Gurvits’s proof for permanents, AmericanMathematical Monthly 117 (2010), 903–911.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Schrijver, Counting 1-factors in regular bipartite graphs, Journal of Combinatorial Theory Series B 72 (1998), 122–135.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Schrijver and W. G. Valiant, On lower bounds for permanents, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 42 (1980), 425–427.

    MathSciNet  MATH  Google Scholar 

  23. H. N. V. Temperley and M. E. Fisher, Dimer problem in statistical mechanics–an exact result, Philosophical Magazine 6 (1961), 1061–1063.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Voorhoeve, A lower bound for the permanents of certain (0, 1)-matrices, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 41 (1979), 83–86.

    MathSciNet  MATH  Google Scholar 

  25. I. Wanless, The Holens–Ɖoković conjecture on permanents fails!, Linear Algebra and its Applications 286 (1999), 273–285.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Csikvári.

Additional information

The author is partially supported by the National Science Foundation under grant no. DMS-1500219 and Hungarian National Foundation for Scientific Research (OTKA), grant no. K109684.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csikvári, P. Matchings in vertex-transitive bipartite graphs. Isr. J. Math. 215, 99–134 (2016). https://doi.org/10.1007/s11856-016-1375-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1375-9

Navigation