Skip to main content
Log in

On the distribution of the divisor function and Hecke eigenvalues

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We investigate the behavior of the divisor function in both short intervals and in arithmetic progressions. The latter problem was recently studied by É. Fouvry, S. Ganguly, E. Kowalski and Ph. Michel. We prove a complementary result to their main theorem. We also show that in short intervals of certain lengths the divisor function has a Gaussian limiting distribution. The analogous problems for Hecke eigenvalues are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Besicovitch, On the linear independence of fractional powers of integers, Journal of the London Mathematical Society 15 1940, 3–6.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Blomer, The average value of divisor sums in arithmetic progressions, Quarterly Journal of Mathematics 59 2008, 275–286.

    Article  MathSciNet  MATH  Google Scholar 

  3. É. Fouvry, S. Ganguly, E. Kowalski and Ph. Michel, Gaussian distribution for the divisor function and Hecke eigenvalues in arithmetic progressions, Commentarii Mathematici Helvetici 89 2014, 979–1014.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. B. Friedlander and H. Iwaniec, Summation formulae for coefficients of L-functions, Canadian Journal of Mathematics 57 2005, 494–505.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. S. Gradshteyn and I. M. Ryzhkik, Tables of Integrals, Series and Products, 5th ed., Academic Press, Boston, MA, 1994.

    Google Scholar 

  6. G. H. Hardy, On Dirichlet’s divisor problem, Proceedings of the London Mathematical Society 15 1917, 1–25.

    Article  MATH  Google Scholar 

  7. D. R. Heath-Brown, The distribution and moments of the error term in the Dirichlet divisor problem, Acta Arithmetica 60 1992, 389–414.

    MathSciNet  MATH  Google Scholar 

  8. C. P. Hughes and Z. Rudnick, On the distribution of lattice points in thin annuli, Interantional Mathematics Research Notices (2004), 637–658.

  9. M. N. Huxley, Exponential sums and lattice points. III, Proceedings of the London Mathematical Society 87 2003, 591–609.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Ivić, The Riemann Zeta-function. The Theory of the Riemann Zeta-function with Applications, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985.

    MATH  Google Scholar 

  11. A. Ivić, On the divisor function and the Riemann zeta-function in short intervals, The Ramanujan Journal 19 2009, 207–224.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Jutila, On the divisor problem for short intervals, Annales Universitatis Turkuensis. Series A I 186 1984, 23–30.

    MathSciNet  MATH  Google Scholar 

  13. J. Keating and Z. Rudnick, The variance of the number of prime polynomials in short intervals and in residue classes, International Mathematics Research Notices (2014), 259–288.

    Google Scholar 

  14. E. Kowalski and G. Ricotta, Fourier coefficients of GL(N) automorphic forms in arithmetic progressions, Geometric and Functional Analysis 24 2014, 1229–1297.

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Lau and L. Zhao, On a variance of Hecke eigenvalues in arithmetic progressions, Journal of Number Theory 132 2012, 869–887.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Lester, On the variance of sums of the divisor functions in short intervals, Proceedings of the American Mathematical Society, to appear.

  17. S. Ramanujan, Some formulae in the analytic theory of numbers, Messenger of Mathematics 45 1916, 81–84.

    Google Scholar 

  18. A. Rankin, Contributions to the theory of Ramanujan’s function t(n) and similar arithmetical functions. I. The zeros of the function 8 n=1 t(n)/ns on the line s = 13/2. II. The order of the Fourier coefficients of integral modular forms, Mathmatical Proceedings of the Cambridge Philosophical Society 35, (1939), 351–372.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. (German) Archiv for Mathematik og Naturvidenskab 43 1940, 47–50.

    MathSciNet  MATH  Google Scholar 

  20. E. C. Titchmarsh, The Theory of the Riemann Zeta-function, Second edition, The Clarendon Press, Oxford University Press, New York, 1986.

    MATH  Google Scholar 

  21. G. F. Voronoi, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Annales Sientifiques de l’école Normale Supérieure 21 1904, 207–268; 459–534.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Lester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lester, S., Yesha, N. On the distribution of the divisor function and Hecke eigenvalues. Isr. J. Math. 212, 443–472 (2016). https://doi.org/10.1007/s11856-016-1290-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1290-0

Keywords

Navigation