Skip to main content
Log in

On the divisor function and the Riemann zeta-function in short intervals

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We obtain, for T εU=U(T)≤T 1/2−ε, asymptotic formulas for

$$\int_{T}^{2T}\Bigl(E(t+U)-E(t)\Bigr)^{2}{\mathrm{d}}{t},\qquad \int_{T}^{2T}\Bigl(\Delta (t+U)-\Delta (t)\Bigr)^{2}{\mathrm{d}}{t},$$

where Δ(x) is the error term in the classical divisor problem, and E(T) is the error term in the mean square formula for \(|\zeta(\frac{1}{2}+\mathit{it})|\) . Upper bounds of the form O ε (T 1+ε U 2) for the above integrals with biquadrates instead of square are shown to hold for T 3/8U=U(T) T 1/2. The connection between the moments of E(t+U)−E(t) and \(|\zeta(\frac{1}{2}+\mathit{it})|\) is also given. Generalizations to some other number-theoretic error terms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, F.V.: The mean value of the Riemann zeta-function. Acta Math. 81, 353–376 (1949)

    Article  MathSciNet  Google Scholar 

  2. Bugeaud, Y., Ivić, A.: Sums of the error term function in the mean square for ζ(s). Mon.hefte Math. (2008, in press). arXiv:0707.4275

  3. Coppola, G., Salerno, S.: On the symmetry of the divisor function in almost all short intervals. Acta Arith. 113, 189–201 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Heath-Brown, D.R.: The twelfth power moment of the Riemann zeta-function. Q. J. Math. (Oxford) 29, 443–462 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ivić, A.: The Riemann Zeta-Function. Wiley, New York, (1985). 2nd edn. Dover, New York (2003)

    MATH  Google Scholar 

  6. Ivić, A.: The Mean Values of the Riemann Zeta-Function. Tata Inst. of Fundamental Research, Bombay, LNs, vol. 82. Springer, Berlin (1991)

    MATH  Google Scholar 

  7. Ivić, A.: On the Riemann zeta function and the divisor problem. Centr. Eur. J. Math. 2(4), 1–15 (2004)

    Google Scholar 

  8. Ivić, A.: On the Riemann zeta function and the divisor problem II. Centr. Eur. J. Math. 3(2), 203–214 (2005)

    Article  MATH  Google Scholar 

  9. Ivić, A.: On the Riemann zeta function and the divisor problem III. Ann. Univ. Bp. Sect. Comput. 29, 3–23 (2008)

    MATH  Google Scholar 

  10. Ivić, A.: On the Riemann zeta function and the divisor problem IV. Uniform Distribution Theory 1, 125–135 (2006)

    MATH  MathSciNet  Google Scholar 

  11. Ivić, A.: Some remarks on the moments of \(|\zeta (\frac{1}{2}+\mathit{it})|\) in short intervals. Acta Math. Hung. (2008, to appear). math.NT/0611427

  12. Ivić, A.: On moments of \(|\zeta (\frac{1}{2}+\mathit{it})|\) in short intervals. The Riemann Zeta Function and Related Themes. Ramanujan Math. Soc. LNS 2. pp. 81–97 (2006). Papers in honour of Professor Ramachandra

  13. Ivić, A.: On the mean square of the zeta-function and the divisor problem. Ann. Acad. Sci. Fenn. Math. 32, 1–9 (2007)

    Google Scholar 

  14. Ivić, A., Sargos, P.: On the higher moments of the error term in the divisor problem. Ill. J. Math. 81, 353–377 (2007)

    Google Scholar 

  15. Jutila, M.: On the divisor problem for short intervals. Ann. Univer. Turkuensis Ser. AI 186, 23–30 (1984)

    MATH  MathSciNet  Google Scholar 

  16. Jutila, M.: A Method in the Theory of Exponential Sums. Tata Lectures on Math., vol. 80. Springer, Berlin (1987)

    MATH  Google Scholar 

  17. Jutila, M.: Mean value estimates for exponential sums. In: Number Theory, Ulm 1987. Lect. Notes in Math., vol. 1380, pp. 120–136. Springer, Berlin (1989)

    Chapter  Google Scholar 

  18. Jutila, M.: Riemann’s zeta-function and the divisor problem. Ark. Mat. 21, 75–96 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jutila, M.: Riemann’s zeta-function and the divisor problem II. Ark. Mat. 31, 61–70 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kaczorowski, A., Perelli, A.: The Selberg class: a survey. In: Györy, K., et al. (eds.) Number Theory in Progress. Proc. Conf. in Honour of A. Schinzel, pp. 953–992. de Gruyter, Berlin (1999)

    Google Scholar 

  21. Kühleitner, M., Nowak, W.G.: The average number of solutions of the Diophantine equation u 2+v 2=w 3 and related arithmetic functions. Acta Math. Hung. 104, 225–240 (2004)

    Article  MATH  Google Scholar 

  22. Ramachandra, K., Sankaranarayanan, A.: On an asymptotic formula of Srinivasa Ramanujan. Acta Arith. 109, 349–357 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rankin, R.A.: Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions II. The order of the Fourier coefficients of integral modular forms. Proc. Camb. Philos. Soc. 35, 357–372 (1939)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rankin, R.A.: Modular Forms and Functions. Cambridge Univ. Press, Cambridge (1977)

    MATH  Google Scholar 

  25. Robert, O., Sargos, P.: Three-dimensional exponential sums with monomials. J. Reine Angew. Math. 591, 1–20 (2006)

    MATH  MathSciNet  Google Scholar 

  26. Selberg, A.: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvidensk. 43, 47–50 (1940)

    MathSciNet  Google Scholar 

  27. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Oxford Univ. Press, Oxford (1986)

    MATH  Google Scholar 

  28. Tsang, K.-M.: Higher power moments of Δ(x), E(t) and P(x). Proc. Lond. Math. Soc. 65(3), 65–84 (1992)

    Article  MathSciNet  Google Scholar 

  29. Zhai, W.: On higher-power moments of Δ(x). Acta Arith. 112, 367–395 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhai, W.: On higher-power moments of Δ(x) II. Acta Arith. 114, 35–54 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zhai, W.: On higher-power moments of Δ(x) III. Acta Arith. 118, 263–281 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhai, W.: On higher-power moments of E(t). Acta Arith. 115, 329–348 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Ivić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivić, A. On the divisor function and the Riemann zeta-function in short intervals. Ramanujan J 19, 207–224 (2009). https://doi.org/10.1007/s11139-008-9142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-008-9142-0

Keywords

Mathematics Subject Classification (2000)

Navigation