Skip to main content
Log in

An integral representation for topological pressure in terms of conditional probabilities

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Given an equilibrium state µ for a continuous function f on a shift of finite type X, the pressure of f is the integral, with respect to µ, of the sum of f and the information function of µ. We show that under certain assumptions on f, X and an invariant measure ν, the pressure of f can also be represented as the integral with respect to ν of the same integrand. Under stronger hypotheses we show that this representation holds for all invariant measures ν. We establish an algorithmic implication for approximation of pressure, and we relate our results to a result in thermodynamic formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Berger, The undecidability of the domino problem, Memoirs of the American Mathematical Society 66 (1966).

  2. R. Bradley, A caution on mixing conditions for random fields, Statistics & Probability Letters 8 (1989), 489–491.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Chandgotia and T. Meyerovitch, Markov random fields, Markov cocycles and the 3-colored chessboard, 2013, preprint, ArXiv: 1305.0808v1.

  4. R. L. Dobrushin, Description of a random field by means of conditional probabilities and conditions for its regularity, Theory of Probability and its Applications 13 (1968), 197–224.

    Article  Google Scholar 

  5. D. Gamarnik and D. Katz, Sequential cavity method for computing free energy and surface pressure, Journal of Statistical Physics 137 (2009), 205–232.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics, Vol. 9, de Gruyter, Berlin, 1988.

    Book  MATH  Google Scholar 

  7. M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensiona shifts of finite type, Annals of Mathematics 171 (2012), 2011–2038.

    Article  MathSciNet  Google Scholar 

  8. U. Krengel, Ergodic Theorems, de Gruyter studies in Mathematics, Vol. 6, de Gruyter, Berlin, 1985.

    Book  MATH  Google Scholar 

  9. O. E. Lanford III and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Communications in Mathematical Physics 13 (1969), 194–215.

    Article  MathSciNet  Google Scholar 

  10. E. Lieb, Residual entropy of square ice, Physical Review 162 (1967), 162–172.

    Article  Google Scholar 

  11. D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995, reprinted 1999.

    Book  MATH  Google Scholar 

  12. B. Marcus and R. Pavlov, Computing bounds on entropy ofd stationary Markov random fields, SIAM Journal on Discrete Mathematics 27 (2013), 1544–1558.

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Marcus and R. Pavlov, Approximating entropy for a class of Markov random fields and pressure for a class of functions on shifts of finite type, Ergodic Theory and Dynamical Systems 33 (2013), 186–220.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Meyerovitch, Gibbs and equilibrium measures for some families of subshifts, Ergodic Theory and Dynamical Systems 33 (2013), 934–953.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Ruelle, Thermodynamic Formalism, Cambridge University Press, Cambridge, 1978.

    MATH  Google Scholar 

  16. K. Schmidt, The cohomology of higher-dimensional shifts of finite type, Pacific Journal of Mathematics 170 (1995), 237–269.

    MATH  MathSciNet  Google Scholar 

  17. K. Schmidt, Tilings, fundamental cocycles and fundamental groups of symbolic zdactions, Ergodic Theory and Dynamical Systems 18 (1998), 1473–1525.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Walsh, Martingales with a multi-dimensional parameter set and stochastic integration in the plane, in Lectures in Probability and Statistics (Santiago de Chile, 1986), Lecture Nores in Mathematics, Vol. 1215, Springer, Berlin, 1986, pp. 329–491.

    Chapter  Google Scholar 

  19. P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, Vol. 79, Springer, Berlin, 1975.

    Google Scholar 

  20. P. Walters, A variational principle for the pressure of continuous transformations, American Journal of Mathematics 97 (1975), 937–971.

    Article  MathSciNet  Google Scholar 

  21. D. Weitz, Combinatorial criteria for uniqueness of Gibbs measures, Random Structures and Algorithms 27 (2005), 445–475.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Marcus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcus, B., Pavlov, R. An integral representation for topological pressure in terms of conditional probabilities. Isr. J. Math. 207, 395–433 (2015). https://doi.org/10.1007/s11856-015-1178-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1178-4

Keywords

Navigation