Skip to main content

Advertisement

Log in

Diagnostic yield of a custom-designed multi-gene cancer panel in Irish patients with breast cancer

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

A Correction to this article was published on 18 February 2020

This article has been updated

Abstract

Background

Breast cancer is genetically heterogeneous, and parellel multi-gene sequencing is the most cost- and time-efficient manner to investigate breast cancer predisposition. Numerous multi-gene panels (MGPs) are commercially available, but many include genes with weak/unproven associaton with breast cancer, or with predisposition to cancer of other types. This study investigates the utility of a custom-designed multi-gene panel in an Irish cohort with breast cancer.

Methods

A custom panel comprising 83 genes offered by 19 clinical “breast cancer predisposition” MGPs was designed and applied to germline DNA from 91 patients with breast cancer and 77 unaffected ethnicially matched controls. Variants were identified and classified using a custom pipeline.

Results

Nineteen loss-of-function (LOF) and 334 missense variants were identified. After removing common and/or benign variants, 15 LOF and 30 missense variants were analysed. Variants in known breast cancer susceptibility genes were identified, including in BRCA1 and ATM in cases, and in NF1 and CHEK2 in controls. Most variants identified were in genes associated with predisposition to cancers other than breast cancer (BRIP1, RAD50, MUTYH, and mismatch repair genes), or in genes with unknown or unproven association with cancer.

Conclusion

Using multi-gene panels enables rapid, cost-effective identification of individuals with high-risk cancer predisposition syndromes. However, this approach also leads to an increased amount of uncertain results. Clinical management of individuals with particular genetic variants in the absence of a matching phenotype/family history is challenging. Further population and functional evidence is required to fully elucidate the clinical relevance of variants in genes of uncertain significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 18 February 2020

    The originally published version of this article contained typesetting errors in Figs.��2 and 3 legends. The correct figure legends are presented here. The original article has been corrected.

Abbreviations

MAF:

Minor allele frequency

NFE:

Non-Finnish European

GWAS:

Genome-wide assocation study

NGS:

Next-generation sequencing

MGP:

Multi-gene panel

VUS:

Variant of uncertain significance

GATK:

Genome Analysis Toolkit

LOF:

Loss-of-function

SNP:

Single nucleotide polymorphism

PCA:

Principle component analysis

VUS:

Variant(s) of uncertain significance

CRC:

Colorectal cancer

LS:

Lynch syndrome

LD:

Linkage disequilibrium

GUS:

Gene(s) of uncertain significance

InSiGHT:

The International Society for Gastrointestinal Hereditary Tumours

ENIGMA:

Evidence-based Network for the Interpretation of Germline Mutant Alleles

References

  1. Peto J, Mack TM (2000) High constant incidence in twins and other relatives of women with breast cancer. Nat Genet 26(4):411–414

    Article  CAS  PubMed  Google Scholar 

  2. Newman B, Austin MA, Lee M, King MC (1988) Inheritance of human breast cancer: evidence for autosomal dominant transmission in high-risk families. Proc Natl Acad Sci U S A 85(9):3044–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lynch HT, Silva E, Snyder C, Lynch JF (2008) Hereditary breast cancer: part I. Diagnosing hereditary breast cancer syndromes. Breast J 14(1):3–13

    Article  PubMed  Google Scholar 

  4. Ghoussaini M, Pharoah PD (2009) Polygenic susceptibility to breast cancer: current state-of-the-art. Future Oncol 5(5):689–701

    Article  PubMed  Google Scholar 

  5. Easton DF, Pharoah PD, Antoniou AC et al (2015) Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 372(23):2243–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nelson HD et al. (2013) U.S. preventive services task force evidence syntheses, formerly systematic evidence reviews, in risk assessment, genetic counseling, and genetic testing for BRCA-related cancer: systematic review to update the U.S. Preventive Services Task Force Recommendation. Agency for Healthcare Research and Quality (US): Rockville (MD)

  7. Thompson ER, Rowley SM, Li N et al (2016) Panel testing for familial breast cancer: calibrating the tension between research and clinical care. J Clin Oncol 34(13):1455–1459

    Article  CAS  PubMed  Google Scholar 

  8. Maxwell KN, Domchek SM, Nathanson KL, Robson ME (2016) Population frequency of germline BRCA1/2 mutations. J Clin Oncol 34(34):4183–4185

    Article  PubMed  Google Scholar 

  9. Nelson HD, Pappas M, Zakher B et al (2014) Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: a systematic review to update the U.S. Preventive Services Task Force recommendation. Ann Intern Med 160(4):255–266

    Article  PubMed  Google Scholar 

  10. Copson ER et al (2018) Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study. Lancet Oncol 19(2):169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuchenbaecker KB, Hopper JL, Barnes DR et al (2017) Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. Jama 317(23):2402–2416

    Article  CAS  PubMed  Google Scholar 

  12. Antoniou A, Pharoah PD, Narod S et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72(5):1117–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen S, Parmigiani G (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25(11):1329–1333

    Article  PubMed  Google Scholar 

  14. Tan MH, Mester JL, Ngeow J et al (2012) Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res 18(2):400–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schon K, Tischkowitz M (2018) Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res Treat 167(2):417–423

    Article  CAS  PubMed  Google Scholar 

  16. Hearle N, Schumacher V, Menko FH et al (2006) Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res 12(10):3209–3215

    Article  CAS  PubMed  Google Scholar 

  17. Kaurah P, MacMillan A, Boyd N et al (2007) Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer. Jama 297(21):2360–2372

    Article  CAS  PubMed  Google Scholar 

  18. Rahman N, Seal S, Thompson D et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39(2):165–167

    Article  CAS  PubMed  Google Scholar 

  19. Sharif S et al (2007) Women with neurofibromatosis 1 are at a moderately increased risk of developing breast cancer and should be considered for early screening. J Med Genet 44(8):481–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meijers-Heijboer H, van den Ouweland A, Klijn J et al (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31(1):55–59

    Article  CAS  PubMed  Google Scholar 

  21. Michailidou K et al (2017) Association analysis identifies 65 new breast cancer risk loci. Nature 551:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Buniello A, MacArthur J, Cerezo M et al (2019) The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47(D1):D1005–d1012

    Article  CAS  PubMed  Google Scholar 

  23. ASSOC. FOR MOLECULAR PATHOLOGY v. MYRIAD GENETICS, INC. 2012, Supreme Court

  24. TCGA Research Network. Available from: http://cancergenome.nih.gov/. Accessed 22 Jan 2020

  25. van Marcke C et al (2016) Routine use of gene panel testing in hereditary breast cancer should be performed with caution. Crit Rev Oncol Hematol 108:33–39

    Article  PubMed  Google Scholar 

  26. Lynce F and C Isaacs (2016) How far do we go with genetic evaluation? Gene, panel, and tumor testing. American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting. 35: p. e72–8

  27. O'Leary E et al (2017) Expanded gene panel use for women with breast cancer: identification and intervention beyond breast cancer risk. Ann Surg Oncol 24(10):3060–3066

    Article  PubMed  PubMed Central  Google Scholar 

  28. Buys SS, Sandbach JF, Gammon A et al (2017) A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 123(10):1721–1730

    Article  CAS  PubMed  Google Scholar 

  29. Lerner-Ellis J et al (2015) Genetic risk assessment and prevention: the role of genetic testing panels in breast cancer. Expert Rev Anticancer Ther 15(11):1315–1326

    Article  CAS  PubMed  Google Scholar 

  30. Kapoor NS et al (2015) Multigene panel testing detects equal rates of pathogenic BRCA1/2 mutations and has a higher diagnostic yield compared to limited BRCA1/2 analysis alone in patients at risk for hereditary breast cancer. Ann Surg Oncol 22(10):3282–3288

    Article  PubMed  Google Scholar 

  31. Crawford B et al (2017) Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients. Breast Cancer Res Treat 163(2):383–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Manchanda R, Patel S, Gordeev VS et al (2018) Cost-effectiveness of population-based BRCA1, BRCA2, RAD51C, RAD51D, BRIP1, PALB2 mutation testing in unselected general population women. J Natl Cancer Inst 110(7):714–725

    Article  PubMed  Google Scholar 

  33. Asphaug L, Melberg HO (2019) The cost-effectiveness of multigene panel testing for hereditary breast and ovarian cancer in Norway. MDM Policy Pract 4(1):2381468318821103

    PubMed  PubMed Central  Google Scholar 

  34. Li Y, Arellano AR, Bare LA et al (2017) A multigene test could cost-effectively help extend life expectancy for women at risk of hereditary breast cancer. Value Health 20(4):547–555

    Article  PubMed  CAS  Google Scholar 

  35. Wentzensen N, Berg CD (2018) Population testing for high penetrance genes: are we there yet? J Natl Cancer Inst 110(7):687–689

    Article  PubMed  PubMed Central  Google Scholar 

  36. Evans DG, Harkness EF, Plaskocinska I et al (2017) Pathology update to the Manchester scoring system based on testing in over 4000 families. J Med Genet 54(10):674–681

    Article  CAS  PubMed  Google Scholar 

  37. McVeigh TP et al (2014) Familial breast cancer genetic testing in the west of Ireland. Ir J Med Sci 183(2):199–206

    Article  CAS  PubMed  Google Scholar 

  38. Collaborative Group on Hormonal Factors in Breast Cancer (2001) Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet 358(9291):1389–1399

    Article  Google Scholar 

  39. Qiagen. Gentra Puregene Blood Kit. 2018 [cited 2018 July 4]; Available from: https://www.qiagen.com/us/shop/sample-technologies/dna/genomic-dna/gentra-puregene-blood-kit/#productdetails

  40. Dnagenotek. DNA Extraction and Purification (prepIT-L2P | PT-L2P). 2018 [cited 2018 July 4]; Available from: https://www.dnagenotek.com/ROW/products/reagents-preparation/prepIT/PT-L2P.html

  41. Andrews, S., FastQC: a quality control tool for high throughput sequence data. 2010

    Google Scholar 

  42. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997

  43. Broad, I Picard toolkit (2018) Available from: http://broadinstitute.github.io/picard/. Accessed 22 Jan 2020

  44. McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. DePristo MA et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van der Auwera GA et al (2013) From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1–11.1033

    Article  Google Scholar 

  47. The Genomes Project C (2015) A global reference for human genetic variation. Nature 526:68

    Article  CAS  Google Scholar 

  48. Cingolani P, Platts A, Wang le L et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92

    Article  CAS  Google Scholar 

  49. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164–e164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F (2016) The Ensembl variant effect predictor. Genome Biol 17(1):122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Shihab HA et al (2014) Ranking non-synonymous single nucleotide polymorphisms based on disease concepts. Human Genomics 8(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362

    Article  CAS  PubMed  Google Scholar 

  53. Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39(17):e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rentzsch P et al (2019) CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47(D1):D886–d894

    Article  CAS  PubMed  Google Scholar 

  56. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42(Database issue):D980–D985

    Article  CAS  PubMed  Google Scholar 

  57. Couch FJ, Shimelis H, Hu C, Hart SN, Polley EC, Na J, Hallberg E, Moore R, Thomas A, Lilyquist J, Feng B, McFarland R, Pesaran T, Huether R, LaDuca H, Chao EC, Goldgar DE, Dolinsky JS (2017) Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncology 3(9):1190–1196

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karczewski KJ et al (2019) Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv:531210

  60. National Comprehensive Cancer Network (2019) Guidelines for genetic/familial risk assessment: breast and ovarian. Version 3. 2019-January 18, 2019. Available from: https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf

  61. Lee AJ et al (2016) Incorporating truncating variants in PALB2, CHEK2, and ATM into the BOADICEA breast cancer risk model. Genet Med 18(12):1190–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pharoah PD, Guilford P, Caldas C (2001) Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology 121(6):1348–1353

    Article  CAS  PubMed  Google Scholar 

  63. Rich TA, Woodson AH, Litton J, Arun B (2015) Hereditary breast cancer syndromes and genetic testing. J Surg Oncol 111(1):66–80

    Article  PubMed  Google Scholar 

  64. Kamihara J, Rana HQ, Garber JE (2014) Germline TP53 mutations and the changing landscape of Li-Fraumeni syndrome. Hum Mutat 35(6):654–662

    Article  CAS  PubMed  Google Scholar 

  65. Southey MC, Teo ZL, Winship I (2013) PALB2 and breast cancer: ready for clinical translation! Appl Clin Genet 6:43–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Antoniou AC, Casadei S, Heikkinen T et al (2014) Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371(6):497–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Southey MC, Teo ZL, Dowty JG et al (2010) A PALB2 mutation associated with high risk of breast cancer. Breast Cancer Res 12(6):R109–R109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Southey MC, Winship I, Nguyen-Dumont T (2016) PALB2: research reaching to clinical outcomes for women with breast cancer. Hereditary Cancer in Clinical Practice 14(1):9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Tavtigian SV et al (2009) Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer. Am J Hum Genet 85(4):427–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schutte M, Seal S, Barfoot R et al (2003) Variants in CHEK2 other than 1100delC do not make a major contribution to breast cancer susceptibility. Am J Hum Genet 72(4):1023–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nevanlinna H, Bartek J (2006) The CHEK2 gene and inherited breast cancer susceptibility. Oncogene 25(43):5912–5919

    Article  CAS  PubMed  Google Scholar 

  72. Schmidt MK, Hogervorst F, van Hien R et al (2016) Age- and tumor subtype-specific breast cancer risk estimates for CHEK2*1100delC carriers. J Clin Oncol 34(23):2750–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vahteristo P, Bartkova J, Eerola H, Syrjäkoski K, Ojala S, Kilpivaara O, Tamminen A, Kononen J, Aittomäki K, Heikkilä P, Holli K, Blomqvist C, Bartek J, Kallioniemi OP, Nevanlinna H (2002) A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet 71(2):432–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Evans DG et al (2010) Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet A 152a(2):327–332

    Article  CAS  PubMed  Google Scholar 

  75. Seminog OO, Goldacre MJ (2015) Age-specific risk of breast cancer in women with neurofibromatosis type 1. Br J Cancer 112(9):1546–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Howell SJ, Hockenhull K, Salih Z, Evans DG (2017) Increased risk of breast cancer in neurofibromatosis type 1: current insights. Breast Cancer (Dove Med Press) 9:531–536

    Google Scholar 

  77. Taylor A, Brady AF, Frayling IM, Hanson H, Tischkowitz M, Turnbull C, Side L, UK Cancer Genetics Group (UK-CGG) (2018) Consensus for genes to be included on cancer panel tests offered by UK genetics services: guidelines of the UK cancer genetics group. J Med Genet 55(6):372–377

    Article  PubMed  Google Scholar 

  78. Office of the Associate Director for Science (OADS), Genomics & Precision Health, Centers for Disease Control and Prevention (2010) ACCE model process for evaluating genetic tests. Available from www.cdc.gov/genomics/gtesting/acce/. Accessed 22 Jan 2020

  79. PHG Foundation. The personalised medicine technology landscape. [September 5, 2018 April 15, 2019]; Available from: http://www.phgfoundation.org/report/personalised-medicine-technology-landscape

  80. McVeigh TP et al (2019) Managing uncertainty in inherited cardiac pathologies-an international multidisciplinary survey. Eur J Hum Genet

  81. Sekine M, Nagata H, Tsuji S et al (2001) Mutational analysis of BRCA1 and BRCA2 and clinicopathologic analysis of ovarian cancer in 82 ovarian cancer families: two common founder mutations of BRCA1 in Japanese population. Clin Cancer Res 7(10):3144–3150

    CAS  PubMed  Google Scholar 

  82. Abkevich V, Zharkikh A, Deffenbaugh AM, Frank D, Chen Y, Shattuck D, Skolnick MH, Gutin A, Tavtigian SV (2004) Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet 41(7):492–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. O'Donnell M, Axilbund J, Euhus DM (2018) In: Bland KI et al (eds) 17 - Breast cancer genetics: syndromes, genes, pathology, counseling, testing, and treatment, in the breast, 5th edn. Elsevier, pp 237–249.e5

  84. Rousset-Jablonski C, Gompel A (2017) Screening for familial cancer risk: focus on breast cancer. Maturitas 105:69–77

    Article  PubMed  Google Scholar 

  85. Sato K, Koyasu M, Nomura S, Sato Y, Kita M, Ashihara Y, Adachi Y, Ohno S, Iwase T, Kitagawa D, Nakashima E, Yoshida R, Miki Y, Arai M (2017) Mutation status of RAD51C, PALB2 and BRIP1 in 100 Japanese familial breast cancer cases without BRCA1 and BRCA2 mutations. Cancer Sci 108(11):2287–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Easton DF, Lesueur F, Decker B et al (2016) No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing. J Med Genet 53(5):298–309

    Article  CAS  PubMed  Google Scholar 

  87. Solyom S, Pylkas K, Winqvist R (2010) Screening for large genomic rearrangements of the BRIP1 and CHK1 genes in Finnish breast cancer families. Familial Cancer 9(4):537–540

    Article  CAS  PubMed  Google Scholar 

  88. Ameziane N, van den Ouweland A, Adank MA, Vijzelaar RN, Errami A, Dorsman JC, Joenje H, Meijers-Heijboer H, Waisfisz Q (2009) Lack of large genomic deletions in BRIP1, PALB2, and FANCD2 genes in BRCA1/2 negative familial breast cancer. Breast Cancer Res Treat 118(3):651–653

    Article  PubMed  Google Scholar 

  89. Theodoratou E, Campbell H, Tenesa A et al (2010) A large-scale meta-analysis to refine colorectal cancer risk estimates associated with MUTYH variants. Br J Cancer 103(12):1875–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nielsen M, Franken PF, Reinards TH et al (2005) Multiplicity in polyp count and extracolonic manifestations in 40 Dutch patients with MYH associated polyposis coli (MAP). J Med Genet 42(9):e54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vogt S et al (2009) Expanded extracolonic tumor spectrum in MUTYH-associated polyposis. Gastroenterology 137(6):1976–85.e1–10

    Article  CAS  PubMed  Google Scholar 

  92. Wasielewski M, Out AA, Vermeulen J, Nielsen M, van den Ouweland A, Tops CM, Wijnen JT, Vasen HF, Weiss MM, Klijn JG, Devilee P, Hes FJ, Schutte M (2010) Increased MUTYH mutation frequency among Dutch families with breast cancer and colorectal cancer. Breast Cancer Res Treat 124(3):635–641

    Article  CAS  PubMed  Google Scholar 

  93. Out AA, Wasielewski M, Huijts PE, van Minderhout I, Houwing-Duistermaat JJ, Tops CM, Nielsen M, Seynaeve C, Wijnen JT, Breuning MH, van Asperen C, Schutte M, Hes FJ, Devilee P (2012) MUTYH gene variants and breast cancer in a Dutch case–control study. Breast Cancer Res Treat 134(1):219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Al-Tassan N et al (2002) Inherited variants of MYH associated with somatic G:C-->T: a mutations in colorectal tumors. Nat Genet 30(2):227–232

    Article  CAS  PubMed  Google Scholar 

  95. Cleary SP, Cotterchio M, Jenkins MA, Kim H, Bristow R, Green R, Haile R, Hopper JL, LeMarchand L, Lindor N, Parfrey P, Potter J, Younghusband B, Gallinger S (2009) Germline MutY human homologue mutations and colorectal cancer: a multisite case-control study. Gastroenterology 136(4):1251–1260

    Article  CAS  PubMed  Google Scholar 

  96. McVeigh TP et al (2016) MUTYH-associated polyposis: the Irish experience>. Ir Med J 109(10):485

    CAS  PubMed  Google Scholar 

  97. Roberts ME et al (2018) MSH6 and PMS2 germ-line pathogenic variants implicated in Lynch syndrome are associated with breast cancer. Genet Med

  98. Goldberg M et al (2017) Association between the Lynch syndrome gene MSH2 and breast cancer susceptibility in a Canadian familial cancer registry. J Med Genet 54(11):742–746

    Article  CAS  PubMed  Google Scholar 

  99. Therkildsen C, Ladelund S, Smith-Hansen L, Lindberg LJ, Nilbert M (2017) Towards gene- and gender-based risk estimates in Lynch syndrome; age-specific incidences for 13 extra-colorectal cancer types. Br J Cancer 117(11):1702–1710

    Article  PubMed  PubMed Central  Google Scholar 

  100. Moller P et al (2018) Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the prospective Lynch syndrome database. Gut 67(7):1306–1316

    Article  PubMed  Google Scholar 

  101. Muller A et al (2002) Exclusion of breast cancer as an integral tumor of hereditary nonpolyposis colorectal cancer. Cancer Res 62(4):1014–1019

    CAS  PubMed  Google Scholar 

  102. de Leeuw WJ et al Correspondence re: A. Muller et al., Exclusion of breast cancer as an integral tumor of hereditary nonpolyposis colorectal cancer. Cancer Res. 62:1014–1019 2002. Cancer Res, 2003 63(5): p. 1148–9

  103. Hampel H, Hall MJ (2018) Hereditary aspects of colorectal cancer: mismatch repair genes drive Lynch syndrome. J Adv Pract Oncol 9(3):311–315

    PubMed Central  Google Scholar 

  104. Surtees JA, Alani E (2006) Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination. J Mol Biol 360(3):523–536

    Article  CAS  PubMed  Google Scholar 

  105. Palombo F et al (1996) hMutSbeta, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr Biol 6(9):1181–1184

    Article  CAS  PubMed  Google Scholar 

  106. Miao HK, Chen LP, Cai DP, Kong WJ, Xiao L, Lin J (2015) MSH3 rs26279 polymorphism increases cancer risk: a meta-analysis. Int J Clin Exp Pathol 8(9):11060–11067

    PubMed  PubMed Central  Google Scholar 

  107. Berndt SI, Platz EA, Fallin MD, Thuita LW, Hoffman SC, Helzlsouer KJ (2007) Mismatch repair polymorphisms and the risk of colorectal cancer. Int J Cancer 120(7):1548–1554

    Article  CAS  PubMed  Google Scholar 

  108. Jafary F, Salehi M, Sedghi M, Nouri N, Jafary F, Sadeghi F, Motamedi S, Talebi M (2012) Association between mismatch repair gene MSH3 codons 1036 and 222 polymorphisms and sporadic prostate cancer in the Iranian population. Asian Pac J Cancer Prev 13(12):6055–6057

    Article  PubMed  Google Scholar 

  109. Hirata H, Hinoda Y, Kawamoto K, Kikuno N, Suehiro Y, Okayama N, Tanaka Y, Dahiya R (2008) Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer. J Urol 179(5):2020–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Adam R, Spier I, Zhao B et al (2016) Exome sequencing identifies biallelic MSH3 germline mutations as a recessive subtype of colorectal adenomatous polyposis. Am J Hum Genet 99(2):337–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Martelotto LG, Ng CK, de Filippo MR, Zhang Y, Piscuoglio S, Lim RS, Shen R, Norton L, Reis-Filho JS, Weigelt B (2014) Benchmarking mutation effect prediction algorithms using functionally validated cancer-related missense mutations. Genome Biol 15(10):484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, ACMG Laboratory Quality Assurance Committee (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424

    Article  PubMed  PubMed Central  Google Scholar 

  113. Association for Clinical Genetic Science (2016) Consensus statement on adoption of the American College of Medical Genetics and Genomics (ACMG) guidelines for sequence variant classification and interpretation [press release]. http://www.acgs.uk.com/media/1032817/acgs_consensus_statement_on_adoption_of_acmg_guidelines__1_.pdf. Accessed 10 Aug 2019

  114. Plon SE, Eccles DM, Easton D, Foulkes WD, Genuardi M, Greenblatt MS, Hogervorst FB, Hoogerbrugge N, Spurdle AB, Tavtigian SV, IARC Unclassified Genetic Variants Working Group (2008) Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 29(11):1282–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vos J, Otten W, van Asperen C, Jansen A, Menko F, Tibben A (2008) The counsellees’ view of an unclassified variant in BRCA1/2: recall, interpretation, and impact on life. Psychooncology 17(8):822–830

    Article  PubMed  Google Scholar 

  116. Mersch J, Brown N, Pirzadeh-Miller S et al (2018) Prevalence of variant reclassification following hereditary cancer genetic testing prevalence of genetic variant reclassification after hereditary genes testing prevalence of genetic variant reclassification after hereditary genes testing. JAMA 320(12):1266–1274

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hoffman-Andrews L (2017) The known unknown: the challenges of genetic variants of uncertain significance in clinical practice. J Law Biosci 4(3):648–657

    Article  PubMed  Google Scholar 

  118. Murray ML, Cerrato F, Bennett RL, Jarvik GP (2011) Follow-up of carriers of BRCA1 and BRCA2 variants of unknown significance: variant reclassification and surgical decisions. Genet Med 13(12):998–1005

    Article  CAS  PubMed  Google Scholar 

  119. Otten E, Plantinga M, Birnie E, Verkerk MA, Lucassen AM, Ranchor AV, van Langen I (2015) Is there a duty to recontact in light of new genetic technologies? A systematic review of the literature. Genet Med 17(8):668–678

    Article  CAS  PubMed  Google Scholar 

  120. Seemanova E et al (2007) Cancer risk of heterozygotes with the NBN founder mutation. J Natl Cancer Inst 99(24):1875–1880

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported and funded with thanks by the National Breast Cancer Research Institute (NBCRI), the Health Service Executive/Health Research Board National Specialist Academic Fellowship (NSAFP 2014/1), and the Monkstown Hospital Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Úna M. McVeigh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The originally published version of this article contained typesetting errors in Figure 2 and 3 legends. This has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McVeigh, Ú.M., McVeigh, T.P., Curran, C. et al. Diagnostic yield of a custom-designed multi-gene cancer panel in Irish patients with breast cancer. Ir J Med Sci 189, 849–864 (2020). https://doi.org/10.1007/s11845-020-02174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-020-02174-x

Keywords

Navigation