Skip to main content
Log in

Photoelectric Properties of SZO/p-GaAs Heterojunction Solar Cells

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this work, we have prepared Sn-doped zinc oxide (SZO) thin films in the range of Sn concentrations of 0–6 wt.% using the spin coating technique to integrate them as emitters in the SZO/p-GaAs photovoltaic structure. The films exhibited a hexagonal würtzite structure highly oriented along the c-axis of the lattice. The SZO film with 3 wt.% Sn showed less strain and stress of lattice. The mean grain size and surface roughness increased with the Sn rate. Additionally, the films demonstrated high optical transmittance and low reflectance in the visible range; also, the films recorded a slight decrease in the optical band gap and refractive index versus the Sn content. Photoluminescence spectra revealed a decrease in ZnO intrinsic defects with Sn rate. The electrical resistivity of the films is strongly dominated by the charge carrier mobility. The SZO film with 3 wt.% Sn recorded the minimal resistivity. Subsequently, numerical simulation showed that the electrical properties of the SZO emitter strongly limit the photoelectric performance of the SZO/p-GaAs structure. The conversion efficiency increased from 0.204% to 14.65% for a high mobility of 25 cm2 V−1 s−1 and a carrier density of 5 × 1019 cm−3 in the SZO emitter zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. T. Huo, H. Yin, D. Zhou, L. Sun, T. Tian, H. Wei, N. Hu, Z. Yang, Y. Zhang, and Y. Su, A.C.S. Sustain. Chem. Eng. 8, 15532 (2020).

    Google Scholar 

  2. M. Yamaguchi, in Post-Transit. Met., ed. by M. Muzibur Rahman, A. Mohammed Asiri, A. Khan, Inamuddin, T. Tabbakh (IntechOpen, 2021).

  3. J.Y. Chen and K.W. Sun, Sol. Energy Mater. Sol. Cells 94, 930 (2010).

    Article  Google Scholar 

  4. Y.F. Makableh, R. Vasan, J.C. Sarker, A.I. Nusir, S. Seal, and M.O. Manasreh, Sol. Energy Mater. Sol. Cells 123, 178 (2014).

    Article  Google Scholar 

  5. A. Crossay, S. Buecheler, L. Kranz, J. Perrenoud, C.M. Fella, Y.E. Romanyuk, and A.N. Tiwari, Sol. Energy Mater. Sol. Cells 101, 283 (2012).

    Article  Google Scholar 

  6. B.-T. Jheng, P.-T. Liu, and M.-C. Wu, Nanoscale Res. Lett. 9, 331 (2014).

    Article  Google Scholar 

  7. M. Manoua, N. Fazouan, A. Almaggoussi, N. Kamoun, and A. Liba, JOM 73, 2819 (2021).

    Article  Google Scholar 

  8. Y. Wu, F. Cao, and X. Ji, J. Mater. Sci. Mater. Electron. 31, 17365 (2020).

    Article  Google Scholar 

  9. T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 23, L280 (1984).

    Article  Google Scholar 

  10. S. Boudour, I. Bouchama, N. Bouarissa, and M. Hadjab, J. Sci. Adv. Mater. Devices 4, 111 (2019).

    Article  Google Scholar 

  11. P. Caban, R. Pietruszka, K. Kopalko, B.S. Witkowski, K. Gwozdz, E. Placzek-Popko, and M. Godlewski, Optik 157, 743 (2018).

    Article  Google Scholar 

  12. J. Sultana, S. Paul, R. Saha, S. Sikdar, A. Karmakar, and S. Chattopadhyay, Thin Solid Films 699, 137861 (2020).

    Article  Google Scholar 

  13. M. Manoua, A. Bouajaj, A. Almaggoussi, N.T. Kamoun, and A. Liba, J. Nanophotonics 16, 026008 (2022).

    Article  Google Scholar 

  14. L. Chen, X. Chen, Y. Liu, Y. Zhao, and X. Zhang, J. Semicond. 38, 054005 (2017).

    Article  Google Scholar 

  15. T. Jannane, M. Manoua, A. Liba, N. Fazouan, and A. El Hichou, and A. Almaggoussi 8, 160 (2017).

    Google Scholar 

  16. S.P. Bharath, K.V. Bangera, and G.K. Shivakumar, Superlattices Microstruct. 124, 72 (2018).

    Article  Google Scholar 

  17. Y. Zhu, Y. Wu, F. Cao, and X. Ji, J. Mater. Sci. Mater. Electron. (2022).

  18. G. Turgut and E.F. Keskenler, J. Mater. Sci. Mater. Electron. 25, 273 (2014).

    Article  Google Scholar 

  19. M. Ajili, M. Castagné, and N.K. Turki, Superlattices Microstruct. 53, 213 (2013).

    Article  Google Scholar 

  20. S.K. Singh, P. Hazra, S. Tripathi, and P. Chakrabarti, J. Mater. Sci. Mater. Electron. 26, 7829 (2015).

    Article  Google Scholar 

  21. G.J. Fang, D.J. Li, and B.-L. Yao, Phys. Status Solidi A 193, 139 (2002).

    Article  Google Scholar 

  22. R.J.D. Tilley, Crystals and Crystal Structures (Wiley, 2006).

    Google Scholar 

  23. P. Dhamodharan, C. Manoharan, M. Bououdina, R. Venkadachalapathy, and S. Ramalingam, Sol. Energy 141, 127 (2017).

    Article  Google Scholar 

  24. E.Ş Tüzemen, S. Eker, H. Kavak, and R. Esen, Appl. Surf. Sci. 255, 6195 (2009).

    Article  Google Scholar 

  25. M.-B. Bouzouraa, A.E. Naciri, A. Moadhen, H. Rinnert, M. Guendouz, Y. Battie, A. Chaillou, M.-A. Zaibi, and M. Oueslati, Mater. Chem. Phys. 175, 233 (2016).

    Article  Google Scholar 

  26. M.-C. Jun, S.-U. Park, and J.-H. Koh, Nanoscale Res. Lett. 7, 639 (2012).

    Article  Google Scholar 

  27. A.-S. Gadallah and M.M. El-Nahass, Adv. Condens. Matter Phys. 2013, 1 (2013).

    Article  Google Scholar 

  28. S. Kumar, R.D. Kaushik, G.K. Upadhyay, and L.P. Purohit, J. Hazard. Mater. 406, 124300 (2021).

    Article  Google Scholar 

  29. M. Ali Yıldırım and A. Ateş, Opt. Commun. 283, 1370 (2010).

    Article  Google Scholar 

  30. J. Tauc, A. Menth, and J. Non-Cryst, Solids 8–10, 569 (1972).

    Google Scholar 

  31. S.K. Singh, P. Hazra, S. Tripathi, and P. Chakrabarti, Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique, in Proceeding of International Conference on Condensed Matter and Applied Physics, vol. 1728 (2016), p. 020168. https://doi.org/10.1063/1.4946219.

  32. H. Aydin, H.M. El-Nasser, C. Aydin, A.A. Al-Ghamdi, and F. Yakuphanoglu, Appl. Surf. Sci. 350, 109 (2015).

    Article  Google Scholar 

  33. M.R. Islam and J. Podder, Cryst. Res. Technol. 44, 286 (2009).

    Article  Google Scholar 

  34. W. Chebil, A. Fouzri, A. Fargi, B. Azeza, Z. Zaaboub, and V. Sallet, Mater. Res. Bull. 70, 719 (2015).

    Article  Google Scholar 

  35. P. Marotel, Spectroscopie Optique de l’oxyde de Zinc (Université de Grenoble, 2011).

    Google Scholar 

  36. R. Mariappan, V. Ponnuswamy, and P. Suresh, Superlattices Microstruct. 52, 500 (2012).

    Article  Google Scholar 

  37. N. Karak, B. Pal, D. Sarkar, and T.K. Kundu, J. Alloys Compd. 647, 252 (2015).

    Article  Google Scholar 

  38. M. Thirumoorthi and J.T.J. Prakash, Superlattices Microstruct. 85, 237 (2015).

    Article  Google Scholar 

  39. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).

    Article  Google Scholar 

  40. X.M. Fan, J.S. Lian, Z.X. Guo, and H.J. Lu, Appl. Surf. Sci. 239, 176 (2005).

    Article  Google Scholar 

  41. M. Manoua, T. Jannane, O. Abouelala, N. Fazouan, A. Almaggoussi, N. Kamoun, and A. Liba, Eur. Phys. J. Appl. Phys. 90, 10101 (2020).

    Article  Google Scholar 

  42. M. Manoua, T. Jannane, O. Abouelala, M. Sajieddine, M. Mabrouki, A. Almaggoussi, and A. Liba. Optimization of ZnO thickness for high efficiency of n-ZnO/p-Si heterojunction solar cells by 2D numerical simulation, in Proceeding of the 2020 IEEE 6th International Conference on Optimization and Applications (ICOA) Beni Mellal. https://doi.org/10.1109/ICOA49421.2020.9094491

  43. M. Manoua, T. Jannane, K. El-Hami, and A. Liba, JOM 75, 3601–3611 (2023).

    Article  Google Scholar 

  44. Y.-C. Kao, H.-M. Chou, S.-C. Hsu, A. Lin, C.-C. Lin, Z.-H. Shih, C.-L. Chang, H.-F. Hong, and R.-H. Horng, Sci. Rep. 9, 4308 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Manoua.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 153 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoua, M., Al Armouzi, N., Fazouan, N. et al. Photoelectric Properties of SZO/p-GaAs Heterojunction Solar Cells. JOM (2024). https://doi.org/10.1007/s11837-024-06553-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06553-y

Navigation