Skip to main content
Log in

Preparation of Foam Glass Ceramics by Sintering of Hazardous Waste Vitrification Slag and Biochar

  • Characterization Techniques and Methods for Low-Carbon Metallurgical Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In term of hazardous waste vitrification, its slag utilization has become a pivotal part of achieving cost reduction. This research has demonstrated the potential of preparing foam glass ceramics through sintering vitrification slag (VS) and biochar (C). It was inferred in TG-DSC analysis that the appropriate sintering temperature for preparing the foam glass ceramics from VS and C was estimated to be roughly 1000–1050°C. The phase and structural transformation of the VS/C system during the sintering process showed that the C promoted the formations of aluminum oxide, grossular ferrian, and merwinite phase; however, the glassy phase still took a leading role. Synchronously, the crystalline phase forming may impact the pore construction. An excellent foam glass showing a dense glossy surface, an evenly distributed honeycomb structure inside, and outstanding integrated performance could be attained through sintering the VS with 2 wt.% C as well as 2 wt.% Na3P2O7 at 1050°C for 60 min. The discoveries could offer an emerging way of employing the VS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Wei, F. Xie, C. Dong, P. Wang, J. Xu, F. Yan, and Z. Zhang, J. Environ. Manag. 324, 116246 https://doi.org/10.1016/j.jenvman.2022.116246 (2022).

    Article  Google Scholar 

  2. N. Dosmukhamedov, and V. Kaplan, JOM 69, 381 https://doi.org/10.1007/s11837-016-2152-2 (2017).

    Article  Google Scholar 

  3. Y. Long, Y. Song, H. Huang, Y. Yang, D. Shen, H. Geng, J. Ruan, and F. Gu, J. Environ. Manag. 351, 119730 https://doi.org/10.1016/j.jenvman.2023.119730 (2024).

    Article  Google Scholar 

  4. M. Nag, D. Labira, T. Shimaoka, H. Nakayama, and T. Komiya, J. Environ. Chem. Eng. 11, 110394 https://doi.org/10.1016/j.jece.2023.110394 (2023).

    Article  Google Scholar 

  5. Y. Long, K. Pu, Y. Yang, H. Huang, H. Fang, D. Shen, H. Geng, J. Ruan, and F. Gu, Constr. Build. Mater. 368, 130492 https://doi.org/10.1016/j.conbuildmat.2023.130492 (2023).

    Article  Google Scholar 

  6. S. Lin, X. Jiang, Y. Zhao, and J. Yan, Environ. Pollut. 311, 119878 https://doi.org/10.1016/j.envpol.2022.119878 (2022).

    Article  Google Scholar 

  7. Y. Niu, L. Wen, X. Guo, and S. Hui, Environ. Int. 166, 107346 https://doi.org/10.1016/j.envint.2022.107346 (2022).

    Article  Google Scholar 

  8. D. Pang, Y. Mao, Y. Jin, Z. Song, X. Wang, J. Li, and W. Wang, Process Saf. Environ. 172, 1072 https://doi.org/10.1016/j.psep.2023.03.004 (2023).

    Article  Google Scholar 

  9. Y. Tao, N. Li, W. Zhang, F. Wang, and S. Hu, J. Clean. Prod. 232, 329 https://doi.org/10.1016/j.jclepro.2019.05.078 (2019).

    Article  Google Scholar 

  10. Y. Long, Y. Song, Y. Yang, H. Huang, H. Fang, D. Shen, H. Geng, J. Ruan, and F. Gu, J. Environ. Manag. 338, 117776 https://doi.org/10.1016/j.jenvman.2023.117776 (2023).

    Article  Google Scholar 

  11. R.C. Sanito, M. Bernuy-Zumaeta, S.-J. You, and Y.-F. Wang, J. Environ. Manag. 316, 115243 https://doi.org/10.1016/j.jenvman.2022.115243 (2022).

    Article  Google Scholar 

  12. Y. Long, Y. Hu, H. Wang, J. Jia, H. Huang, D. Shen, and F. Gu, J. Clean. Prod. 434, 140004 https://doi.org/10.1016/j.jclepro.2023.140004 (2024).

    Article  Google Scholar 

  13. J. Zhang, B. Liu, X. Zhang, H. Shen, J. Liu, and S. Zhang, Ecotoxicol. Environ. Saf. 243, 113995 https://doi.org/10.1016/j.ecoenv.2022.113995 (2022).

    Article  Google Scholar 

  14. S. Wu, S. Zhang, Y. Zhang, and C. Gao, Constr. Build. Mater. 348, 128647 https://doi.org/10.1016/j.conbuildmat.2022.128647 (2022).

    Article  Google Scholar 

  15. X. Geng, Z. Zhu, J. Cao, Z. Wang, J. Lu, and G. Qian, Ceram. Int. 47, 13874 https://doi.org/10.1016/j.ceramint.2021.01.254 (2021).

    Article  Google Scholar 

  16. J.H. Heo, J.-W. Cho, H.S. Park, and J.H. Park, J. Clean. Prod. 225, 743 https://doi.org/10.1016/j.jclepro.2019.04.035 (2019).

    Article  Google Scholar 

  17. F. Fu, N. Hu, Y. Ye, and G. Chen, Ceram. Int. https://doi.org/10.1016/j.ceramint.2023.07.192 (2023).

    Article  Google Scholar 

  18. Y. Liu, J. Yang, H. Shen, J. Zhang, W. Li, X. Zhang, J. Liu, B. Liu, and S. Zhang, Ceram. Int. 48, 34364 https://doi.org/10.1016/j.ceramint.2022.08.014 (2022).

    Article  Google Scholar 

  19. H. Li, R. Wang, W. Zhao, H. Guo, B. Yan, and P. Li, Constr. Build. Mater. 359, 129528 https://doi.org/10.1016/j.conbuildmat.2022.129528 (2022).

    Article  Google Scholar 

  20. C. Li, P. Zhang, and D. Li, Constr. Build. Mater. 356, 129231 https://doi.org/10.1016/j.conbuildmat.2022.129231 (2022).

    Article  Google Scholar 

  21. J. Zhang, B. Liu, and S. Zhang, Sci. Total Environ. 781, 146727 https://doi.org/10.1016/j.scitotenv.2021.146727 (2021).

    Article  Google Scholar 

  22. X. Shi, Q. Liao, L. Liu, F. Deng, F. Chen, F. Wang, H. Zhu, L. Zhang, and C. Liu, Ceram. Int. 49, 35534 https://doi.org/10.1016/j.ceramint.2023.08.232 (2023).

    Article  Google Scholar 

  23. H. Xiong, J. Sun, C. Liu, W. Xian, W. Wang, L. Luo, and S. Li, J. Non-Cryst. Solids 617, 122499 https://doi.org/10.1016/j.jnoncrysol.2023.122499 (2023).

    Article  Google Scholar 

  24. Y. Long, Y. Song, H. Huang, Y. Yang, D. Shen, H. Geng, J. Ruan, and F. Gu, Constr. Build. Mater. 404, 133225 https://doi.org/10.1016/j.conbuildmat.2023.133225 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Key R&D Program of Zhejiang Province, China (2022C03059) and the Scientific Research Project of Zhejiang Provincial Department of Education (Y202147303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foquan Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 132 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Song, Y., Jia, J. et al. Preparation of Foam Glass Ceramics by Sintering of Hazardous Waste Vitrification Slag and Biochar. JOM (2024). https://doi.org/10.1007/s11837-024-06392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06392-x

Navigation