Skip to main content
Log in

Mechanical Properties of Al-9Si-0.6Mg-0.1Sr Alloy Processed By Successive Hot and Cold Multi-directional Forging

  • Deformation-Assisted Pathways to Microstructural Manipulation
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, the effect of successive hot and cold multi-directional forging (MDF) on the mechanical properties of the Al-9Si-0.6Mg-0.1Sr alloy was explored. The alloy was first homogenized and then forged at 200°C from 3 to 15 passes. After each three passes of hot forging, the samples were then cold forged up to three passes at room temperature. The microstructural examinations were carried out with X-ray diffraction technique and scanning electron microscopy equipped with energy-dispersive spectroscopy while mechanical properties were determined by tensile, compression and hardness tests. The hard particles were fragmented and began to distribute homogeneously into the matrix with increasing pass number of hot MDF. The yield, tensile and compressive strengths of the alloy reached to their maximum values at three passes of hot MDF along with hardness, above which they decreased, while its ductility exhibited a reverse trend. The cold MDF significantly increased the mechanical properties of initially hot MDFed samples. The nine passes in hot MDF were determined as the optimum pass number for obtaining the highest yield and tensile strength after cold MDF. These findings were evaluated according to dislocation strengthening, recrystallization and morphology of hard particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. H. Ye, J. Mater. Eng. Perform. 12, 288 https://doi.org/10.1361/105994903770343132 (2003).

    Article  Google Scholar 

  2. P. Rambabu, N. Eswara Prasad, V.V. Kutumbarao, and R.J.H. Wanhill, Aerospace Materials and Material Technologies (Springer, Singapore, 2017), p. 29–52. https://doi.org/10.1007/978-981-10-2134-3.

    Book  Google Scholar 

  3. R.C. Dorward and T.R. Pritchett, Mater. Des. 9, 63 https://doi.org/10.1016/0261-3069(88)90076-3 (1988).

    Article  Google Scholar 

  4. M. Yıldırım and D. Özyürek, Mater. Des. 51, 767 https://doi.org/10.1016/j.matdes.2013.04.089 (2013).

    Article  Google Scholar 

  5. A.P. Hekimoğlu, M. Çalış, and G. Ayata, Met. Mater. Int. 25, 1488 https://doi.org/10.1007/s12540-019-00429-6 (2019).

    Article  Google Scholar 

  6. C.H. Caceres, C.J. Davidson, J.R. Griffiths, and Q.G. Wang, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 30, 2611 https://doi.org/10.1007/s11661-999-0301-8 (1999).

    Article  Google Scholar 

  7. Q. Li, B. Li, J. Li, T. Xia, Y. Lan, and T. Guo, Int. J. Metalcast. 11, 823 https://doi.org/10.1007/s40962-016-0131-6 (2017).

    Article  Google Scholar 

  8. J. Hernandez-Sandoval, M.H. Abdelaziz, A.M. Samuel, H.W. Doty, and F.H. Samuel, Adv. Mater. Sci. Eng. 2021, 9933168 https://doi.org/10.1155/2021/9933168 (2021).

    Article  Google Scholar 

  9. Z. Ma, A.M. Samuel, F.H. Samuel, H.W. Doty, and S. Valtierra, Mater. Sci. Eng. A 490, 36 https://doi.org/10.1016/j.msea.2008.01.028 (2008).

    Article  Google Scholar 

  10. M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, and J. Banhart, Acta Mater. 60, 3920 https://doi.org/10.1016/j.actamat.2012.03.031 (2012).

    Article  Google Scholar 

  11. M.R.S. Ganesh, N. Reghunath, M.J. Levin, A. Prasad, S. Doondi, and K.V. Shankar, Met. Mater. Int. 28, 1 https://doi.org/10.1007/s12540-021-01054-y (2022).

    Article  Google Scholar 

  12. L. Lu, K. Nogita, and A.K. Dahle, Mater. Sci. Eng. A 399, 244 https://doi.org/10.1016/j.msea.2005.03.091 (2005).

    Article  Google Scholar 

  13. A.P. Hekimoğlu, and Ş Bayraktar, Proc. Inst. Mech. Eng. Part B 236, 1807 https://doi.org/10.1177/09544054221092916 (2022).

    Article  Google Scholar 

  14. S. Swaminathan, J.M. García-Infanta, T.R. McNelley, O.A. Ruano, and F. Carreño, J. Mater. Sci. 43, 7501 https://doi.org/10.1007/s10853-008-2625-y (2008).

    Article  Google Scholar 

  15. E. Damavandi, S. Nourouzi, S.M. Rabiee, R. Jamaati, and J.A. Szpunar, J. Mater. Sci. 56, 3535 https://doi.org/10.1007/s10853-020-05479-5 (2021).

    Article  Google Scholar 

  16. L. Tang, G. Xu, Y. Deng, H. Gan, A. Ma, and Z. Yin, JOM 70, 2684 https://doi.org/10.1007/s11837-017-2616-z (2018).

    Article  Google Scholar 

  17. I. Sabirov, M.Y. Murashkin, and R.Z. Valiev, Mater. Sci. Eng. A 560, 1 https://doi.org/10.1016/j.msea.2012.09.020 (2013).

    Article  Google Scholar 

  18. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, and Y.T. Zhu, JOM 58, 33 https://doi.org/10.1007/s11837-006-0213-7 (2006).

    Article  Google Scholar 

  19. R.Z. Valiev, Prog. Mater. Sci. 45, 103 https://doi.org/10.1016/S0079-6425(99)00007-9 (2000).

    Article  Google Scholar 

  20. I. Gutierrez-Urrutia, M.A. Muñoz-Morris, I. Puertas, C. Luis, and D.G. Morris, Mater. Sci. Eng. A 475, 268 https://doi.org/10.1016/j.msea.2007.04.055 (2008).

    Article  Google Scholar 

  21. L. Deng, X. Wang, J. Xia, and J. Li, Mater. Sci. Eng. A 528, 6504 https://doi.org/10.1016/j.msea.2011.05.009 (2011).

    Article  Google Scholar 

  22. Y.C. Chen, Y.Y. Huang, C.P. Chang, and P.W. Kao, Acta Mater. 51, 2005 https://doi.org/10.1016/S1359-6454(02)00607-9 (2003).

    Article  Google Scholar 

  23. K. Regina Cardoso, M.A. Muñoz-Morris, K. Valdés León, and D.G. Morris, Mater. Sci. Eng. A 587, 387 https://doi.org/10.1016/j.msea.2013.09.006 (2013).

    Article  Google Scholar 

  24. J.M. García-Infanta, A.P. Zhilyaev, F. Carreño, O.A. Ruano, J.Q. Su, S.K. Menon, and T.R. McNelley, J. Mater. Sci. 45, 4613 https://doi.org/10.1007/s10853-010-4530-4 (2010).

    Article  Google Scholar 

  25. Y. Alemdağ, S. Karabiyik, and G. Pürçek, Met. Mater. Int. 29, 1181 https://doi.org/10.1007/s12540-022-01280-y (2023).

    Article  Google Scholar 

  26. Y. Alemdag, S. Karabiyik, A.V. Mikhaylovskaya, M.S. Kishchik, and G. Purcek, Mater. Sci. Eng. A 803, 140709 https://doi.org/10.1016/j.msea.2020.140709 (2021).

    Article  Google Scholar 

  27. T. Aoba, M. Kobayashi, and H. Miura, Mater. Trans. 59, 373 https://doi.org/10.2320/matertrans.L-M2017856 (2018).

    Article  Google Scholar 

  28. Z.-C. Sun, L.-S. Zheng, and H. Yang, Mater Charact 90, 71 https://doi.org/10.1016/j.matchar.2014.01.019 (2014).

    Article  Google Scholar 

  29. R. Kapoor, A. Sarkar, R. Yogi, S.K. Shekhawat, I. Samajdar, and J.K. Chakravartty, Mater. Sci. Eng. A 560, 404 https://doi.org/10.1016/j.msea.2012.09.085 (2013).

    Article  Google Scholar 

  30. Y. Duan, L. Tang, G. Xu, Y. Deng, and Z. Yin, J. Alloys Compd. 664, 518 https://doi.org/10.1016/j.jallcom.2016.01.022 (2016).

    Article  Google Scholar 

  31. A. Yamashita, D. Yamaguchi, Z. Horita, and T.G. Langdon, Mater. Sci. Eng. A 287, 100 https://doi.org/10.1016/S0921-5093(00)00836-4 (2000).

    Article  Google Scholar 

  32. M.H. Goodarzy, H. Arabi, M.A. Boutorabi, S.H. Seyedein, and S.H. Hasani Najafabadi, J. Alloys Compd. 585, 753 https://doi.org/10.1016/j.jallcom.2013.09.202 (2014).

    Article  Google Scholar 

  33. A.V. Mikhaylovskaya, A.D. Kotov, M.S. Kishchik, A.S. Prosviryakov, and V.K. Portnoy, Metals 9, 33 https://doi.org/10.3390/met9010033 (2019).

    Article  Google Scholar 

  34. X. Zhuo, Q. Zhang, H. Liu, Z. Hu, P. Zhang, J. Jiang, A. Ma, and Y. Wu, J. Alloys Compd. 899, 163321 https://doi.org/10.1016/j.jallcom.2021.163321 (2022).

    Article  Google Scholar 

  35. D. Song, G. Wang, Z. Zhou, E.E. Klu, B. Gao, A. Ma, Y. Wu, J. Sun, J. Jiang, and X. Ma, Mater. Sci. Eng. A 773, 138880 https://doi.org/10.1016/j.msea.2019.138880 (2020).

    Article  Google Scholar 

  36. A. Abd El-Aty, Y. Xu, S.-H. Zhang, S. Ha, Y. Ma, and D. Chen, J. Adv. Res. 18, 19 https://doi.org/10.1016/j.jare.2019.01.012 (2019).

    Article  Google Scholar 

  37. C.S. Ho, and M.K. Mohd Nor, Met. Mater. Int. 27, 4967 https://doi.org/10.1007/s12540-020-00858-8 (2021).

    Article  Google Scholar 

  38. Y.H. Cho, H.C. Lee, K.H. Oh, and A.K. Dahle, Metall. Mater. Trans. A 39, 2435 https://doi.org/10.1007/s11661-008-9580-8 (2008).

    Article  Google Scholar 

  39. A.K. Dahle, K. Nogita, S.D. McDonald, J.W. Zindel, and L.M. Hogan, Metall. Mater. Trans. A 32, 949 https://doi.org/10.1007/s11661-001-0352-y (2001).

    Article  Google Scholar 

  40. J. Manickaraj, A. Gorny, Z. Cai, and S. Shankar, Appl. Phys. Lett. 104, 073102 https://doi.org/10.1063/1.4865496 (2014).

    Article  Google Scholar 

  41. H. He, Y. Yi, S. Huang, and Y. Zhang, Mater. Sci. Eng. A 712, 414 https://doi.org/10.1016/j.msea.2017.11.124 (2018).

    Article  Google Scholar 

  42. F. Dong, Y. Yi, C. Huang, and S. Huang, J. Alloys Compd. 827, 154300 https://doi.org/10.1016/j.jallcom.2020.154300 (2020).

    Article  Google Scholar 

  43. M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, and S.H. Seyyedein, Prog. Nat. Sci. Mater. Int. 26, 182 https://doi.org/10.1016/j.pnsc.2016.03.003 (2016).

    Article  Google Scholar 

  44. J. Zhao, Y. Deng, and J. Tang, J. Mater. Res. Technol. 9, 8001 https://doi.org/10.1016/j.jmrt.2020.05.033 (2020).

    Article  Google Scholar 

  45. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Prog. Mater. Sci. 60, 130 https://doi.org/10.1016/j.pmatsci.2013.09.002 (2014).

    Article  Google Scholar 

  46. R.K. Roy, Light Met. Alloys Appl. 4, 79–98 https://doi.org/10.5772/58385 (2014).

    Article  Google Scholar 

  47. B. Kumara, and G.V. Preetham Kumar, Metallogr. Microstruct. Anal. https://doi.org/10.1007/s13632-022-00836-z (2022).

    Article  Google Scholar 

  48. S. Gourdet, and F. Montheillet, Mater. Sci. Eng. A 283, 274 https://doi.org/10.1016/S0921-5093(00)00733-4 (2000).

    Article  Google Scholar 

  49. Y. Ito, and Z. Horita, Mater. Sci. Eng. A 503, 32 https://doi.org/10.1016/j.msea.2008.03.055 (2009).

    Article  Google Scholar 

  50. Q.-F. Zhu, L. Li, C.-Y. Ban, Z.-H. Zhao, Y.-B. Zuo, and J.-Z. Cui, Trans. Nonferrous Met. Soc. China 24, 1301 https://doi.org/10.1016/S1003-6326(14)63192-7 (2014).

    Article  Google Scholar 

  51. E.F. Prados, V.L. Sordi, and M. Ferrante, Acta Mater. 61, 115 https://doi.org/10.1016/j.actamat.2012.09.038 (2013).

    Article  Google Scholar 

  52. M.S. Kishchik, A.V. Mikhaylovskaya, A.D. Kotov, A.O. Mosleh, W.S. AbuShanab, and V.K. Portnoy, Materials (Basel) 11, 2166 https://doi.org/10.3390/ma11112166 (2018).

    Article  Google Scholar 

  53. M. Wang, L. Huang, W. Liu, Y. Ma, and B. Huang, Mater. Sci. Eng. A 674, 40 https://doi.org/10.1016/j.msea.2016.07.072 (2016).

    Article  Google Scholar 

  54. J.M. García-Infanta, A.P. Zhilyaev, C.M. Cepeda-Jiménez, O.A. Ruano, and F. Carreño, Scr. Mater. 58, 138 https://doi.org/10.1016/j.scriptamat.2007.09.018 (2008).

    Article  Google Scholar 

  55. A. Ma, N. Saito, M. Takagi, Y. Nishida, H. Iwata, K. Suzuki, I. Shigematsu, and A. Watazu, Mater. Sci. Eng. A 395, 70 https://doi.org/10.1016/j.msea.2004.12.038 (2005).

    Article  Google Scholar 

  56. H. Zhang, L. Li, D. Yuan, and D. Peng, Mater Charact 58, 168 https://doi.org/10.1016/j.matchar.2006.04.012 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted at Materials Science Laboratory in Karadeniz Technical University Department of Mechanical Engineering. The SEM-EDS and XRD analyses were performed at the Central Research Laboratories of Karadeniz Technical University. Authors thank all staff who helped with the experiments and state that this research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SK: Visualization, Investigation, Writing—Original Draft. YA: Conceptualization, Methodology, Writing—Original Draft, Supervision. MA: Investigation, Validation, Visualization. GP: Writing—Review & Editing. APH: Writing—Review & Editing.

Corresponding author

Correspondence to Yasin Alemdag.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabiyik, S., Alemdag, Y., Atmaca, M. et al. Mechanical Properties of Al-9Si-0.6Mg-0.1Sr Alloy Processed By Successive Hot and Cold Multi-directional Forging. JOM 76, 807–817 (2024). https://doi.org/10.1007/s11837-023-06245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06245-z

Navigation