Skip to main content
Log in

Multi-fidelity Uncertainty Quantification for Homogenization Problems in Structure-Property Relationships from Crystal Plasticity Finite Elements

  • Uncertainty Quantification and Design under Uncertainty for Metallic Systems
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Crystal plasticity finite element method (CPFEM) has been an integrated computational materials engineering (ICME) workhorse to study materials behaviors and structure-property relationships for the last few decades. These relations are mappings from the microstructure space to the materials properties space. Due to the stochastic and random nature of microstructures, there is always some uncertainty associated with materials properties, for example, in homogenized stress-strain curves. For critical applications with strong reliability needs, it is often desirable to quantify the microstructure-induced uncertainty in the context of structure-property relationships. However, this uncertainty quantification (UQ) problem often incurs a large computational cost because many statistically equivalent representative volume elements (SERVEs) are needed. In this article, we apply a multi-level Monte Carlo (MLMC) method to CPFEM to study the uncertainty in stress-strain curves, given an ensemble of SERVEs at multiple mesh resolutions. By using the information at coarse meshes, we show that it is possible to approximate the response at fine meshes with a much reduced computational cost. We focus on problems where the model output is multi-dimensional, which requires us to track multiple quantities of interest (QoIs) at the same time. Our numerical results show that MLMC can accelerate UQ tasks around 2.23\(\times \), compared to the classical Monte Carlo (MC) method, which is widely known as ensemble average in the CPFEM literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.B. Olson, Science 277(5330), 1237 (1997).

    Article  Google Scholar 

  2. R. Arróyave and D.L. McDowell, Annu. Rev. Mater. Res. 49(1), 103 (2019).

    Article  Google Scholar 

  3. T. Hey, S. Tansley, and K.M. Tolle, The fourth paradigm: data-intensive scientific discovery, vol 1. (Microsoft research Redmond, WA, 2009).

  4. A. Agrawal and A. Choudhary, APL Mater. 4(5), 053208 (2016).

    Article  Google Scholar 

  5. U.N.R. Council, Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security (National Academies Press, 2008).

  6. U.S. Nstc, Materials Genome Initiative for global competitiveness (Executive Office of the President, National Science and Technology Council, 2011).

  7. J.J. de Pablo, N.E. Jackson, M.A. Webb, L.Q. Chen, J.E. Moore, D. Morgan, R. Jacobs, T. Pollock, D.G. Schlom, E.S. Toberer, J. Analytis, I. Dabo, D.M. DeLongchamp, G.A. Fiete, G.M. Grason, G. Hautier, Y. Mo, K. Rajan, E.J. Reed, E. Rodriguez, V. Stevanovic, J. Suntivich, K. Thornton, and J.C. Zhao, npj Comput. Mater. 5(1), 1 (2019).

    Article  Google Scholar 

  8. T. Oden, R. Moser, and O. Ghattas, SIAM News 43(9), 1 (2010).

    Google Scholar 

  9. T. Oden, R. Moser, and O. Ghattas, SIAM News 43(10), 1 (2010).

    Google Scholar 

  10. T. Nguyen, D.C. Francom, D.J. Luscher, and J. Wilkerson, J. Mech. Phys. Solids 149, 104284 (2021).

    Article  Google Scholar 

  11. M. Hasan and P. Acar, AIAA J. 60(12), 6869 (2022).

    Article  Google Scholar 

  12. A. Tran, D. Liu, H.A. Tran, and Y. Wang, Modell. Simul. Mater. Sci. Eng. 27(6), 064005 (2019).

    Article  Google Scholar 

  13. A. Tran, T. Wildey, and H. Lim, Front. Mater. 9, 1 (2022).

    Article  Google Scholar 

  14. A. Venkatraman, S. Mohan, R. Joseph, D.L. McDowell, S.R. Kalidindi, Modell. Simul. Mater. Sci. Eng. (2023).

  15. M. Rixner, P.S. Koutsourelakis, npj Comput. Mater. 8(1), 46 (2022).

  16. A. Tran and T. Wildey, JOM 73, 72 (2020).

    Article  Google Scholar 

  17. T. Butler, J. Jakeman, and T. Wildey, SIAM J. Sci. Comput. 40(2), A984 (2018).

    Article  Google Scholar 

  18. T. Butler, J. Jakeman, and T. Wildey, SIAM J. Sci. Comput. 40(5), A3523 (2018).

    Article  Google Scholar 

  19. A. Tran, P. Robbe, and H. Lim, Materialia 27, 101705 (2023).

    Article  Google Scholar 

  20. T.M. Rodgers, H. Lim, and J.A. Brown, JOM 72(1), 75 (2020).

    Article  Google Scholar 

  21. J.A. Mitchell, F. Abdeljawad, C. Battaile, C. Garcia-Cardona, E.A. Holm, E.R. Homer, J. Madison, T.M. Rodgers, A.P. Thompson, V. Tikare, E. Webb, and S.J. Plimpton, Modell. Simul. Mater. Sci. Eng. 31(5), 055001 (2023).

    Article  Google Scholar 

  22. A. Tran, H. Lim, Comput. Mech. (2023).

  23. A. Tran, M. Eldred, T. Wildey, S. McCann, J. Sun, and R.J. Visintainer, Struct. Multidiscip. Optim. 65(4), 1 (2022).

    Google Scholar 

  24. D.E. Ricciardi, O.A. Chkrebtii, and S.R. Niezgoda, Integr. Mater. Manuf. Innov. 9, 181 (2020).

    Article  Google Scholar 

  25. M.C. Kennedy and A. O’Hagan, J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(3), 425 (2001).

    Article  MathSciNet  Google Scholar 

  26. M. Khalil, G.H. Teichert, C. Alleman, N. Heckman, R.E. Jones, K. Garikipati, and B. Boyce, Comput. Methods Appl. Mech. Eng. 373, 113471 (2021).

    Article  Google Scholar 

  27. S.F. Ghoreishi, A. Molkeri, A. Srivastava, R. Arroyave, and D. Allaire, J. Mech. Des. 140(11), 111409 (2018).

    Article  Google Scholar 

  28. M. Groeber, S. Ghosh, M.D. Uchic, and D.M. Dimiduk, Acta Materialia 56(6), 1257 (2008).

    Article  Google Scholar 

  29. M. Groeber, S. Ghosh, M.D. Uchic, and D.M. Dimiduk, Acta Materialia 56(6), 1274 (2008).

    Article  Google Scholar 

  30. S. Torquato, Annu. Rev. Mater. Res. 32(1), 77 (2002).

    Article  Google Scholar 

  31. R. Bostanabad, Y. Zhang, X. Li, T. Kearney, L.C. Brinson, D.W. Apley, W.K. Liu, and W. Chen, Prog. Mater Sci. 95, 1 (2018).

    Article  Google Scholar 

  32. N.H. Paulson, M.W. Priddy, D.L. McDowell, and S.R. Kalidindi, Acta Mater. 129, 428 (2017).

    Article  Google Scholar 

  33. K. Teferra and L. Graham-Brady, Comput. Methods Appl. Mech. Eng. 330, 253 (2018).

    Article  Google Scholar 

  34. N.H. Paulson, M.W. Priddy, D.L. McDowell, and S.R. Kalidindi, Mater. Des. 154, 170 (2018).

    Article  Google Scholar 

  35. C. Robert and G. Casella, Monte Carlo Statistical Methods (Springer Science & Business Media, Berlin, 2013).

    MATH  Google Scholar 

  36. I. Babuška and M. Suri, Comput. Methods Appl. Mech. Eng. 80(1–3), 5 (1990).

    Article  Google Scholar 

  37. M.B. Giles, Acta Numer. 24, 259 (2015).

    Article  MathSciNet  Google Scholar 

  38. K.A. Cliffe, M.B. Giles, R. Scheichl, and A.L. Teckentrup, Comput. Vis. Sci. 14(1), 3 (2011).

    Article  MathSciNet  Google Scholar 

  39. P. Robbe, D. Nuyens, and S. Vandewalle, SIAM J. Sci. Comput. 39(5), S851 (2017).

    Article  Google Scholar 

  40. P. Robbe, D. Nuyens, and S. Vandewalle, SIAM J. Sci. Comput. 41(5), S37 (2019).

    Article  Google Scholar 

  41. M.A. Groeber and M.A. Jackson, Integr. Mater. Manuf. Innov. 3(1), 5 (2014).

    Article  Google Scholar 

  42. ...F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.O. Fabritius, S. Nikolov, M. Friák, N. Fujita, N. Grilli, K. Janssens, N. Jia, P. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, and D. Raabe, Comput. Mater. Sci. 158, 420 (2019).

    Article  Google Scholar 

  43. S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, in Modern software tools for scientific computing (Springer, 1997), pp. 163–202.

  44. S. Balay, S. Abhyankar, M.F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E.M. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W.D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M.G. Knepley, F. Kong, S. Kruger, D.A. May, L.C. McInnes, R.T. Mills, L. Mitchell, T. Munson, J.E. Roman, K. Rupp, P. Sanan, J. Sarich, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, J. Zhang. PETSc Web page. https://petsc.org/ (2023).

  45. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater. 58(4), 1152 (2010).

    Article  Google Scholar 

  46. F. Roters, P. Eisenlohr, T.R. Bieler, and D. Raabe, Crystal Plasticity Finite Element Methods: In Materials Science and Engineering (Wiley, Hoboken, 2011).

    Google Scholar 

  47. K. Sedighiani, M. Diehl, K. Traka, F. Roters, J. Sietsma, and D. Raabe, Int. J. Plast 134, 102779 (2020).

    Article  Google Scholar 

  48. K. Sedighiani, K. Traka, F. Roters, D. Raabe, J. Sietsma, and M. Diehl, Mech. Mater. 164, 104117 (2022).

    Article  Google Scholar 

  49. F. Wang, S. Sandlöbes, M. Diehl, L. Sharma, F. Roters, and D. Raabe, Acta Mater. 80, 77 (2014).

    Article  Google Scholar 

  50. D. Tromans, Int. J. Res. Rev. Appl. Sci 6(4), 462 (2011).

    MathSciNet  Google Scholar 

  51. S. Agnew, D. Brown, and C. Tomé, Acta Mater. 54(18), 4841 (2006).

    Article  Google Scholar 

  52. A. Mangal and E.A. Holm, Data Brief 21, 1833 (2018).

    Article  Google Scholar 

  53. P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, I. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A.P. Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C.N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D.A. Nicholson, D.R. Hagen, D.V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G.A. Price, G.L. Ingold, G.E. Allen, G.R. Lee, H. Audren, I. Probst, J.P. Dietrich, J. Silterra, J.T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick, J.L. Schönberger, J.V. de Miranda Cardoso, J. Reimer, J. Harrington, J.L.C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N.J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P.A. Brodtkorb, P. Lee, R.T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T.J. Pingel, T.P. Robitaille, T. Spura, T.R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y.O. Halchenko, and Y. Vázquez-Baeza, Nat. Methods 17(3), 261 (2020).

    Article  Google Scholar 

  54. A.L. Haji-Ali, F. Nobile, and R. Tempone, Numer. Math. 132(4), 767 (2016).

    Article  MathSciNet  Google Scholar 

  55. B. Peherstorfer, K. Willcox, and M. Gunzburger, SIAM J. Sci. Comput. 38(5), A3163 (2016).

    Article  Google Scholar 

  56. B. Peherstorfer, K. Willcox, and M. Gunzburger, SIAM Rev. 60(3), 550 (2018).

    Article  MathSciNet  Google Scholar 

  57. E. Qian, B. Peherstorfer, D. O’Malley, V.V. Vesselinov, and K. Willcox, SIAM/ASA J. Uncertain. Quantif. 6(2), 683 (2018).

    Article  MathSciNet  Google Scholar 

  58. A.A. Gorodetsky, G. Geraci, M.S. Eldred, and J.D. Jakeman, J. Comput. Phys. 408, 109257 (2020).

    Article  MathSciNet  Google Scholar 

  59. D. Schaden and E. Ullmann, SIAM/ASA J. Uncertain. Quantif. 8(2), 601 (2020).

    Article  MathSciNet  Google Scholar 

  60. D. Schaden and E. Ullmann, SIAM/ASA J. Uncertain. Quantif. 9(3), 953 (2021).

    Article  MathSciNet  Google Scholar 

  61. G.F. Bomarito, P.E. Leser, J.E. Warner, and W.P. Leser, J. Comput. Phys. 451, 110882 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh Tran.

Ethics declarations

Conflict of interest

The authors thank two anonymous reviewers for their critics, which has substantially improved the quality of the manuscript. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, A., Robbe, P., Rodgers, T. et al. Multi-fidelity Uncertainty Quantification for Homogenization Problems in Structure-Property Relationships from Crystal Plasticity Finite Elements. JOM (2023). https://doi.org/10.1007/s11837-023-06182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-023-06182-x

Navigation