Skip to main content
Log in

Dynamic Behavior Characterization of Aluminum Alloy 7020 Manufactured Using the Additive Friction Stir Deposition Process

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this research, we study the feasibility of using the solid-state additive manufacturing process, additive friction stir deposition (AFSD), as a suitable technology for creating bulk structural components using aluminum alloy 7020. Using a set of the acceptable processing conditions, a fully dense 92-mm-tall build was successful created. Microstructural characterization of the as-deposited AA7020 revealed a highly refined and equiaxed grain structure compared to the AA7020-T651 feedstock material. Tensile specimens were extracted from the as-deposited component in longitudinal direction to evaluate strain-rate dependance and fatigue behavior. In the quasi-static regime (0.001 s−1), the as-deposited AA7020 exhibited layer dependence throughout the build direction indicated by a diminished YS and UTS when comparing the final, intermediate, and initial layers of the deposit and the feedstock material. The layer dependence noted in the quasi-static regime is attributed to the increasing thermal input in the build direction during AFSD process. However, in the high-rate regime (2000 s−1), the as-deposited material had a similar flow stress to the feedstock material. Additionally, stress-life experiments determined a decrease in fatigue life between the final, intermediate, and initial layers of the deposit due to the inconsistent MgZn-rich particle coarsening inherent to the AFSD process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Polmear, Light Alloys, 5th edn. (Elsevier, Amsterdam, 2017).

    Google Scholar 

  2. R. Bobbili, V. Madhu, and A.K. Gogia, J. Mater. Res. Technol. 5, 190 (2016).

    Google Scholar 

  3. L. Djapic Oosterkamp, A. Ivankovic, and G. Venizelos, Mater. Sci. Eng. A 278, 225 (2000).

    Google Scholar 

  4. Q. Puydt, S. Flouriot, S. Ringeval, F. De Geuser, R. Estevez, G. Parry, and A. Deschamps, Metall. Mater. Trans. A 45, 6141 (2014).

    Google Scholar 

  5. X. Wang, B. Li, M. Li, C. Huang, and H. Chen, Mater. Sci. Eng. A 688, 114 (2017).

    Google Scholar 

  6. Y.N. Hu, S.C. Wu, Z. Song, Y.N. Fu, Q.X. Yuan, and L.L. Zhang, Fatigue Fract. Eng. Mater. Struct. 41, 2010 (2018).

    Google Scholar 

  7. P. N. Adler and R. DeIasi, Metall. Trans. A 8A, (1977).

  8. J.K. Park, and A.J. Ardell, Metall. Trans. A 14, 1957 (1983).

    Google Scholar 

  9. P.N. Adler, R. Deiasi, and G. Geschwind, Metall. Trans. 3, 31913200 (1972).

    Google Scholar 

  10. A. J. D. E. Ardo, 1, 2573 (1970).

  11. L.K. Berg, J. Gjoønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L.R. Wallenberg, Acta Mater. 49, 3443 (2001).

    Google Scholar 

  12. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Acta Mater. 62, 141 (2014).

    Google Scholar 

  13. J. Albrecht, A.W. Thompson, and I.M. Bernstein, Metall. Trans. A 10, 1759 (1979).

    Google Scholar 

  14. C. Meng, D. Zhang, H. Cui, L. Zhuang, and J. Zhang, J. Alloys Compd. 617, 925 (2014).

    Google Scholar 

  15. C. Bloem, M. Salvador, V. Amig, and M. Vergar Alum. Alloys Theory Appl. (2011).

  16. Y. Zhang, B. Milkereit, O. Kessler, C. Schick, and P.A. Rometsch, J. Alloys Compd. 584, 581 (2014).

    Google Scholar 

  17. A. Barbucci, P.L. Cabot, G. Bruzzone, and G. Cerisola, J. Alloys Compd. 268, 295 (1998).

    Google Scholar 

  18. Q. Ding, D. Zhang, Y. Pan, S. Hou, L. Zhuang, and J. Zhang, Mater. Sci. Technol. 35, 1071 (2019).

    Google Scholar 

  19. H. Liu, Z. Zhao, D. Zhang, and J. Zhang, Mater. Sci. Technol. U. K. 37, 852 (2021).

    Google Scholar 

  20. S. Li, L.J. Zhang, J. Ning, X. Wang, G.F. Zhang, J.X. Zhang, and S.J. Na, J. Mater. Res. Technol. 9, 13770 (2020).

    Google Scholar 

  21. J.R. Croteau, S. Griffiths, M.D. Rossell, C. Leinenbach, C. Kenel, V. Jansen, D.N. Seidman, D.C. Dunand, and N.Q. Vo, Acta Mater. 153, 35 (2018).

    Google Scholar 

  22. S.B. Adisa, I. Loginova, A. Khalil, and A. Solonin, J. Manuf. Mater. Process. 2, 33 (2018).

    Google Scholar 

  23. L. Zhou, H. Hyer, S. Thapliyal, R.S. Mishra, B. McWilliams, K. Cho, and Y. Sohn, Metall. Mater. Trans. Phys. Metall. Mater. Sci. 51, 3215 (2020).

    Google Scholar 

  24. A.M. Gaafer, T.S. Mahmoud, and E.H. Mansour, Mater. Sci. Eng. A 527, 7424 (2010).

    Google Scholar 

  25. G. Srinivasa Rao, V.V. Subba Rao, and S.R.K. Rao, Met. Sci. Heat Treat. 59, 139 (2017).

    Google Scholar 

  26. C. Sharma, D.K. Dwivedi, and P. Kumar, Mater. Des. 43, 134 (2013).

    Google Scholar 

  27. C. Sharma, D.K. Dwivedi, and P. Kumar, Mater. Des. 64, 334 (2014).

    Google Scholar 

  28. L. Rath, Z. Kallien, A. Roos, J.F. dos Santos, and B. Klusemann, Int. J. Adv. Manuf. Technol. 125, 2091 (2023).

    Google Scholar 

  29. R.M. Halak, L. Rath, U.F.H.R. Suhuddin, J.F. dos Santos, and B. Klusemann, Int. J. Mater. Form. 15, 24 (2022).

    Google Scholar 

  30. T. Nishihara, in THERMEC’2003 (Trans Tech Publications Ltd, 2003), pp. 2971–2978.

  31. D. Z. Avery, C. E. Cleek, B. J. Phillips, Y. R. Rekha, J. R. P. Kinser, H. M. Rao, and P. G. Allison, (n.d.).

  32. T.W. Robinson, M.B. Williams, H.M. Rao, R.P. Kinser, P.G. Allison, and J.B. Jordon, J. Manuf. Sci. Eng. Trans. ASME 144, 1 (2022).

    Google Scholar 

  33. R.J. Griffiths, M.E.J.J. Perry, J.M. Sietins, Y. Zhu, N. Hardwick, C.D. Cox, H.A. Rauch, and H.Z. Yu, J. Mater. Eng. Perform. 28, 648 (2019).

    Google Scholar 

  34. R.J. Griffiths, D. Garcia, J. Song, V.K. Vasudevan, M.A. Steiner, W. Cai, and H.Z. Yu, Materialia 15, 100967 (2021).

    Google Scholar 

  35. C. Zeng, H. Ghadimi, H. Ding, S. Nemati, A. Garbie, J. Raush, and S. Guo, Materials 15, 3676 (2022).

    Google Scholar 

  36. N. Zhu, D.Z. Avery, Y. Chen, K. An, J.B. Jordon, P.G. Allison, and L.N. Brewer, J. Mater. Eng. Perform. 32, 5535 (2022).

    Google Scholar 

  37. J. J. Lopez, M. B. Williams, T. W. Rushing, J. Brian Jordon, J. A. Cartwright, G. B. Thompson, and P. G. Allison, 298 (2023).

  38. J.J. Lopez, M.B. Williams, T.W. Rushing, M.P. Confer, A. Ghosh, C.S. Griggs, J.B. Jordon, G.B. Thompson, and P.G. Allison, Materialia 23, 101440 (2022).

    Google Scholar 

  39. K. Anderson-Wedge, G. Stubblefield, N. Zhu, B. Long, S.R. Daniewicz, P. Allison, J. Sowards, O. Rodriguez, and R. Amaro, Int. J. Fatigue 142, 105954 (2021).

    Google Scholar 

  40. S.C. Beck, B.A.A. Rutherford, D.Z.Z. Avery, B.J.J. Phillips, H. Rao, M.Y.Y. Rekha, L.N.N. Brewer, P.G.G. Allison, and J.B.B. Jordon, Mater. Sci. Eng. A 819, 141351 (2021).

    Google Scholar 

  41. B.J. Phillips, C.J. Williamson, R.P. Kinser, J.B. Jordon, K.J. Doherty, and P.G. Allison, Microstruct. Mater. 14, 6732 (2021).

    Google Scholar 

  42. M.E.J. Perry, R.J. Griffiths, D. Garcia, J.M. Sietins, Y. Zhu, and H.Z. Yu, Addit. Manuf. 35, 101293 (2020).

    Google Scholar 

  43. M.B. Williams, T.W. Robinson, C.J. Williamson, R.P. Kinser, N.A. Ashmore, P.G. Allison, and J.B. Jordon, Met. 11, 1739 (2021).

    Google Scholar 

  44. S. Sharma, K.V. Mani Krishna, M. Radhakrishnan, M.V. Pantawane, S.M. Patil, S.S. Joshi, R. Banerjee, and N.B. Dahotre, Mater. Des. 224, 111412 (2022).

    Google Scholar 

  45. S.S. Joshi, S.M. Patil, S. Mazumder, S. Sharma, D.A. Riley, S. Dowden, R. Banerjee, N.B. Dahotre, and J. Magnes, Alloys 10, 2404 (2022).

    Google Scholar 

  46. D.Z. Avery, O.G. Rivera, C.J.T. Mason, B.J. Phillips, J.B. Jordon, J. Su, N. Hardwick, and P.G. Allison, JOM 70, 2475 (2018).

    Google Scholar 

  47. O.G. Rivera, P.G. Allison, J.B. Jordon, O.L. Rodriguez, L.N. Brewer, Z. McClelland, W.R. Whittington, D. Francis, J. Su, R.L. Martens, and N. Hardwick, Mater. Sci. Eng. A 694, 1 (2017).

    Google Scholar 

  48. R.J. Griffiths, D.T. Petersen, D. Garcia, and H.Z. Yu, Appl. Sci. 9, 3486 (2019).

    Google Scholar 

  49. J.K. Yoder, R.J. Griffiths, and H.Z. Yu, Mater. Des. 198, 109288 (2021).

    Google Scholar 

  50. C.J.T. Mason, R.I. Rodriguez, D.Z. Avery, B.J. Phillips, B.P. Bernarding, M.B. Williams, S.D. Cobbs, J.B. Jordon, and P.G. Allison, Addit. Manuf. 40, 101879 (2021).

    Google Scholar 

  51. C.J.T. Mason, D.Z. Avery, B.J. Phillips, J.B. Jordon, and P.G. Allison, J. Dyn. Behav. Mater. 8, 214 (2022).

    Google Scholar 

  52. D.Z. Avery, B.J. Phillips, C.J.T. Mason, M. Palermo, M.B. Williams, C. Cleek, O.L. Rodriguez, P.G. Allison, and J.B. Jordon, Metall. Mater. Trans. A 51, 2778 (2020).

    Google Scholar 

  53. ASTM, i, 10 (2010).

  54. A.S.T.M. Standard, ASTM Int. E384, 1 (2017).

    Google Scholar 

  55. ASTM, ASTM Int. 1 (2017).

  56. P.R. Gradl, O.R. Mireles, C.S. Protz, and C.P. Garcia, Metal Additive Manufacturing for Propulsion Applications (American Institute of Aeronautics and Astronautics Inc, Reston, VA, 2022).

    Google Scholar 

  57. H. Agiwal, C. Baumann, S. Krall, H. Yeom, K. Sridharan, F. Bleicher, and F.E. Pfefferkorn, J. Manuf. Sci. Eng. 145, 011001 (2022).

    Google Scholar 

  58. M. Yuqing, K. Liming, H. Chunping, L. Fencheng, and L. Qiang, Int. J. Adv. Manuf. Technol. 83, 1637 (2016).

    Google Scholar 

  59. O.G.G. Rivera, P.G.G. Allison, L.N.N. Brewer, O.L.L. Rodriguez, J.B.B. Jordon, T. Liu, W.R.R. Whittington, R.L.L. Martens, Z. McClelland, C.J.T.J.T. Mason, L. Garcia, J.Q.Q. Su, and N. Hardwick, Mater. Sci. Eng. A 724, 547 (2018).

    Google Scholar 

  60. B.A. Rutherford, D.Z. Avery, B.J. Phillips, H.M. Rao, K.J. Doherty, P.G. Allison, L.N. Brewer, and J. Brian Jordon, Metals 10, 1 (2020).

    Google Scholar 

  61. J. Humphreys, G.S. Rohrer, and A. Rollett, Recrystallization and Related Annealing Phenomena (Elsevier, Cambridge, 2017).

    Google Scholar 

  62. S.-S. Rui, L.-S. Niu, H.-J. Shi, S. Wei, and C.C. Tasan, J. Mech. Phys. Solids 133, 103709 (2019).

    MathSciNet  Google Scholar 

  63. A. Thakur, Int. J. Curr. Eng. Technol. 9, 220 (2019).

    Google Scholar 

  64. A. Balasundaram, A.M. Gokhale, S. Graham, and M.F. Horstemeyer, Mater. Sci. Eng. A 355, 368 (2003).

    Google Scholar 

  65. A.R. Eivani, H. Vafaeenezhad, O. Nikan, and J. Zhou, Mech. Mater. 129, 104 (2019).

    Google Scholar 

  66. W. Zhang, X. Chen, B. Zhuo, P. Li, and L. He, Mater. Sci. Eng. A 730, 336 (2018).

    Google Scholar 

  67. Y.L. Wang, Q.L. Pan, L.L. Wei, B. Li, and Y. Wang, Mater. Des. 55, 857 (2014).

    Google Scholar 

  68. S. Nemati, L.G. Butler, K. Ham, G.L. Knapp, C. Zeng, S. Emanet, H. Ghadimi, S. Guo, Y. Zhang, and H. Bilheux, Metals 13, 188 (2023).

    Google Scholar 

  69. K.-D. Jiang, Z. Zhang, W.-B. Zhu, Q.-L. Pan, Y.-L. Deng, and X.-B. Guo, Mater. Sci. Eng. A 829, 142184 (2022).

    Google Scholar 

Download references

Acknowledgements

The authors thank the Point of Need Innovations (PONI) at Baylor University, the UA Manufacturing at the Point-of-Need Center (MPNC), and the Alabama Analytical Research Center (AARC) for their support of this project. Additionally, the authors thank US Army Combat Capabilities Development Command (DEVCOM) Ground Vehicle System Command (GVSC) for the financial support of this project. DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC7288.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Allison.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 44 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, M.B., Cahalan, L.P., Lopez, J.J. et al. Dynamic Behavior Characterization of Aluminum Alloy 7020 Manufactured Using the Additive Friction Stir Deposition Process. JOM 75, 4868–4880 (2023). https://doi.org/10.1007/s11837-023-06126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06126-5

Navigation