Skip to main content
Log in

Analysis of High-Cycle Fatigue Life Prediction of 304 Stainless Steel Based on Deep Learning

  • Machine Learning: Deformation Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this century, deep learning has been widely used due to the rapid popularization of the Internet and the improvement of computer performance. This dataset has been established by collecting the high-cycle fatigue test data of 304 stainless steel. The datasets were preprocessed, then inputted into the back propagation neural network model, a fuzzy neural network model, and a long short-term memory neural network (LSTM) model for training and testing. The reliability and generalization of the three models have been verified by high-cycle fatigue experiments, and the prediction effects of the three models compared. The results show that the LSTM model in the deep learning model has better prediction accuracy for high-cycle fatigue life, is superior to the other two machine learning models in terms of generalization and accuracy, and the correlation coefficient (R2) of the final prediction result was 0.9786.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Shadroo and A.M. Rahmani, Comput. Netw. 139, 19 (2018).

    Article  Google Scholar 

  2. K. Wang, Y. Song, P. La, F. Wei, F. Ma, J. Sheng, X. Guo, Z. Li, and Y. Shi, Steel Res. Int. 89, 19 (2018).

    Google Scholar 

  3. T. Yuan, L. Zhang, Y. Ren, Q. Zhao, and C. Liu, Steel Res. Int. 92, 198 (2021).

    Google Scholar 

  4. E.T. Akinlabi, A.D. Baruwa, O.P. Oladijo, N. Maledi, and J. Chinn, J. Mater. Eng. Perform. 28, 6330 (2019).

    Article  Google Scholar 

  5. E. Khalili and M. Sarafbidabad, Surf. Interfaces 8, 219 (2017).

    Article  Google Scholar 

  6. F. Li, X.C. Sui, X.X. Guo, and H.B. Dai, JOM 66, 2161 (2014).

    Article  Google Scholar 

  7. T. Balusamy, N. Sankara, T.S. Narayanan, K. Ravichandran, M.H. Lee, and N. Toshiyasu, ACS Appl. Mater. Interfaces 32, 17731 (2015).

    Google Scholar 

  8. E. Santecchia, A. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, M. El Mehtedi, and S. Spigarelli, Adv. Mater. Sci. Eng. 116, 1 (2016).

    Article  Google Scholar 

  9. M.I. Jordan and T.M. Mitchell, Sci. Am. 349, 255 (2015).

    Google Scholar 

  10. S.Q. Wang, Beijing Institute of Technology (2018).

  11. X. Zhang, J.G. Gong, and F.Z. Xuan, Int. J. Fatigue 148, 106236 (2021).

    Article  Google Scholar 

  12. C. Janiesch, Electronic Mark. 31, 685 (2021).

    Article  Google Scholar 

  13. Y. Liu, T.L. Zhao, W.W. Ju, and S.Q. Shi, J. Materiomics 3, 175 (2017).

    Google Scholar 

  14. S. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, W. Ju, and C. Ouyang, China Phys. B 26, 178 (2016).

    Google Scholar 

  15. J. Ling, E. Antono, S. Bajaj, S. Paradiso, M. Hutchinson, B. Meredig, and B.M. Gibbons, in ASME Turbo Expo: Turbomachinery Technical Conference and Exposition (2018).

  16. A. Simpson, Neural Netw. 61, 85 (2015).

    Article  Google Scholar 

  17. V. Albuquerque, A. Alexandria, and P.C. Cortez, NDT E Int. 7, 644 (2009).

    Article  Google Scholar 

  18. N. Baldo, E. Manthos, and M. Miani, Appl. Sci. 9, 3502 (2019).

    Article  Google Scholar 

  19. R. Wei and Y. Bi, Materials 12, 3641 (2019).

    Article  Google Scholar 

  20. D. Merayo, L. Rodríguez-Prieto, and A.M. Camacho, IEEE Access 62, 13444 (2020).

    Article  Google Scholar 

  21. G. Liu, L. Jia, B. Kong, K. Guan, and H. Zhang, Mater. Des. 152, 129 (2017).

    Google Scholar 

  22. T. Thankachan, K.S. Prakash, C.D. Pleass, D. Rammasamy, B. Prabakaran, and S. Jothi, Int. J. Hydrog. Energy 42, 28612 (2017).

    Article  Google Scholar 

  23. Z.H. Zhou, Machine Learning (Tsinghua University Press, Beijing, 2016), pp116–126.

    Google Scholar 

  24. R. M. Xiang and Q. H. Wang, Southwest University of Finance and Economics Press (2015).

  25. A. Fatemi and F. Yang, Int. J. Fatigue 20, 9 (1998).

    Article  Google Scholar 

  26. H.Z. Zhang, C.Y. Li, M.T. Xu, W.B.Dai, P. Kumar, Z.D. Liu, Z.Y. Li, and Y.M. Zhang, J. Mater. Sci. Eng. A 802 (2021).

  27. S. Ji, C. Liu, Y. Li, S. Shi, and X. Chen, Mater. Sci. Eng. 746, 50 (2019).

    Article  Google Scholar 

  28. M. Sadeghilaridjani, A. Ayyagari, S. Muskeri, V. Hasannaeimi, J. Jiang, and S. Mukherjee, JOM 72, 123 (2020).

    Article  Google Scholar 

  29. T. Sakai, K. Okada, M. Furuichi, I. Nishikawa, and A. Sugeta, Int. J. Fatigue 28(11), 1486 (2006).

    Article  Google Scholar 

  30. R.P. Spencer and E.A. Patterson, Fatigue Fract. Eng. Mater. Struct. 42, 2120 (2019).

    Article  Google Scholar 

  31. Y.H. Chung, T.C. Chen, H.B. Lee, and L.W. Tsay, Metals 11, 1408 (2021).

    Article  Google Scholar 

  32. S.W. Jeong, U.G. Kang, J.Y. Choi, and W.J. Nam, J. Mater. Eng. 21, 1937 (2012).

    Google Scholar 

  33. G.F. Jinag, L. Sun, and G. Chen, Mech. Strength 36, 852 (2014).

    Google Scholar 

  34. Y. Liu, C.X. Wang, X.L. Yang, F. Sun, and J. Song, J. Braz. Soc. Mech. Sci. Eng. 42, 1 (2020).

    Article  Google Scholar 

  35. D. Rao and Z. Xu, Theor. Appl. Fract. Mech. 100, 110 (2019).

    Article  Google Scholar 

  36. P. Wang, C. Shi, and T.Y. Xie, Mech. Des. Manuf. Eng. 46, 84 (2017).

    Google Scholar 

  37. E.H. Kadi and Y. Al-Assaf, Compos. Struct. 55(2), 239–246 (2002). https://doi.org/10.1016/S0263-8223(01)00152-0.

    Article  Google Scholar 

  38. F.M. Bianchi, E.D. Santis, A. Rizzi, and A. Sadeghian, IEEE Access 3, 1931 (2015).

    Article  Google Scholar 

  39. Q. Yin, F. Tan, H. Chen, and G. Yin, Robotersysteme 101, 1699 (2019).

    Google Scholar 

  40. K. Genel, Int. J. Fatigue 26(10), 1027 (2004).

    Article  Google Scholar 

  41. N.S. Reddy, B.B. Panigrahi, C.M. Ho, J.H. Kim, and Ch.S. Lee, Comput. Mater. Sci. 107, 175 (2015).

    Article  Google Scholar 

  42. H. Liu, Z. Zhang, H. Jia, Q. Li, Y. Liu, and J.J.C. Leng, Compos. Struct. 252 (2020).

  43. F. Landi, L. Baraldi, M. Cornia, and R. Cucchiara, Neural Netw. 144, 334 (2021).

    Article  Google Scholar 

  44. G. Khodabandelou and M.M. Ebadzadeh, Soft Comput. 23, 12153 (2019).

    Article  Google Scholar 

  45. C. Duan and S. Zhang, Int. J. Naval Archit. Ocean Eng. 12, 354–366 (2020).

    Article  Google Scholar 

  46. B. Zhang, S. Guo, and H. Jin, Energy 246, 123306 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong He.

Ethics declarations

Conflict of interest

The corresponding author declares on behalf of all authors that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., He, H., Yue, S. et al. Analysis of High-Cycle Fatigue Life Prediction of 304 Stainless Steel Based on Deep Learning. JOM 75, 4586–4595 (2023). https://doi.org/10.1007/s11837-023-06042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06042-8

Navigation