Skip to main content
Log in

Study on Feasibility and Superiority of Preparing TiO2-Rich Burdens by Composite Agglomeration Process

  • Pyrometallurgical Techniques Driving Recycling and the Circular Economy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Titanomagnetite concentrate is known for the difficulty of its sintering by traditional sintering process (TSP) because of a high content of TiO2. In this study, the feasibility study of blast furnace burden preparation was carried out by composite agglomeration process (CAP). The work in this study focuses on the effects of titanomagnetite concentrate ratio, composite basicity, and coke breeze dosage on agglomeration indexes of CAP. The calculation results of the pneumatics of sintered bed show that CAP optimizes the particle size distribution of the mixed feed and increases the voidage of the material layer, which improves the permeability index. Under the following experimental conditions (coke breeze dosage of 3.8 wt.%, pelletized feed proportion of 25%, and composite basicity of 1.76), a sintering yield of 73.60%, productivity of 1.58t·(m2 h), and RDI+3.15 of 76.76% have been achieved by CAP, which were 12.10%, 49.06%, and 16.71% higher than those by TSP, respectively. Under same conditions of composite basicity, agglomeration technical indexes of CAP are obviously better than those of TSP. CAP is an effective method to produce low-basicity sinter, which can reduce the proportion of acid pellets that cost more in blast furnace burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Naito, K. Takeda, and Y. Matsui, ISIJ Int. 55, 7 (2015).

    Article  Google Scholar 

  2. X. Lv, Z. Lun, J. Yin, and C. Bai, ISIJ Int. 53, 1115 (2013).

    Article  Google Scholar 

  3. P.R. Taylor, S.A. Shuey, E.E. Vidal, and J.C. Gomez, Min. Metall. Explor. 23, 80 (2006).

    Google Scholar 

  4. S. Samanta, M.C. Goswami, T.K. Baidya, S. Mukherjee, and R. Dey, Int. J. Min. Met. Mater. 20, 917 (2013).

    Article  Google Scholar 

  5. Z. Yu, G. Li, T. Jiang, Y. Zhang, F. Zhou, and Z. Peng, ISIJ Int. 55, 907 (2015).

    Article  Google Scholar 

  6. A. Dehghanmanshadi, J. Manuel, S. Hapugoda, and N. Ware, ISIJ Int. 54, 2189 (2014).

    Article  Google Scholar 

  7. N.J. Bristow, and C.E. Loo, ISIJ Int. 32, 819 (1992).

    Article  Google Scholar 

  8. S. Ren, J. Zhang, L. Wu, B. Su, X. Xing, and G. Zhu, Ironmak. Steelmak. 41, 132 (2014).

    Article  Google Scholar 

  9. M. Zhou, T. Jiang, S. Yang, and X. Xue, Int. J. Miner. Process. 142, 125 (2015).

    Article  Google Scholar 

  10. M. Zhou, S. Yang, T. Jiang, and X. Xue, Ironmak. Steelmak. 42, 217 (2015).

    Article  Google Scholar 

  11. J. Tang, M. Chu, and X. Xue, Int. J. Min. Met. Mater. 22, 371 (2015).

    Article  Google Scholar 

  12. X. Chen, Y. Huang, X. Fan, and M. Gan, J. Cent. South Univ. Sci. Technol. 47, 359 (2016).

    Google Scholar 

  13. J. Zhang, G. Yang, H. Guo, Y. Shao, J. Li, and Y. Wen, J. Univ. Sci. Technol. Beijing 35, 41 (2013).

    Google Scholar 

  14. T. Jiang, G. Li, H. Wang, K. Zhang, and Y. Zhang, Ironmak. Steelmak. 37, 1 (2010).

    Article  Google Scholar 

  15. F. Gu, Y. Zhang, G. Li, Q. Zhong, J. Luo, Z. Su, M. Rao, Z. Peng, and T. Jiang, J. Iron Steel Res. Int. 27, 1363 (2020).

    Article  Google Scholar 

  16. G. Li, C. Liu, Z. Yu, M. Rao, Q. Zhong, Y. Zhang, and T. Jiang, Energies 11, 2382 (2018).

    Article  Google Scholar 

  17. G. Li, J. Zeng, T. Jiang, Q. Li, Y. Yang, R. Wang, and H. Wu, J. Iron Steel Res. Int. 16, 149 (2009).

    Google Scholar 

  18. Y. Zhang, B. Liu, L. Xiong, G. Li, and T. Jiang, Ironmak. Steelmak. 44, 532 (2017).

    Article  Google Scholar 

  19. Y. Zhang, M. Du, Z. Su, G. Li, and T. Jiang, Ironmak. Steelmak. 45, 566 (2018).

    Article  Google Scholar 

  20. Y. Lu, S. Wu, H. Zhou, L. Ma, Z. Liu, and Y. Wang, ISIJ Int. 61, 2211 (2021).

    Article  Google Scholar 

  21. Y. Lu, S. Wu, L. Niu, Z. Liu, H. Zhou, Z. Hong, and S. Song, Ironmak. Steelmak. 48, 477 (2020).

    Article  Google Scholar 

  22. Z. Yuan, L. Li, Y. Han, L. Liu, and T. Liu, J. Cent. South Univ. 23, 2838 (2016).

    Article  Google Scholar 

  23. S. Wu, L. Wang, Y. Lu, and K. Gu, Steel Res. Int. 89, 1800041 (2018).

    Article  Google Scholar 

  24. S. AI-Jaroudi, A. UI-Hamid, A. Mohammed, and S. Saner, Powder Technol. 175, 115 (2007).

    Article  Google Scholar 

  25. F.H. Chung, J. Appl. Cryst. 7, 519 (1974).

    Article  Google Scholar 

  26. N.A. Webster, M.I. Pownceby, I.C. Madsen, A.J. Studer, J.R. Manuel, and J.A. Kimpton, Metall. Mater. Trans. B 45, 2097 (2014).

    Article  Google Scholar 

  27. X. Zhang, Q. Zhong, C. Liu, M. Rao, Z. Peng, G. Li, and T. Jiang, Sci. Rep. 11, 1 (2021).

    Article  Google Scholar 

  28. S. Ergun, Chem. Eng. Prog. 48, 89 (1952).

    Google Scholar 

  29. T. Jiang, Technical manual of sintering and pelletizing production (Metallurgical Industry Press, 2014), p65.

    Google Scholar 

Download references

Acknowledgement

The authors wish to express their thanks to National Key Research and Development Program of China (No. 22021YFC2902301) for the financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 187 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhou, H., Yuan, F. et al. Study on Feasibility and Superiority of Preparing TiO2-Rich Burdens by Composite Agglomeration Process. JOM 75, 3424–3434 (2023). https://doi.org/10.1007/s11837-023-05998-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05998-x

Navigation